首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The photoinduced electron-transfer process of a newly prepared, soluble, pi-conjugated poly[9,9-bis(4-diphenylaminophenyl)-2,7-fluorene] (PDPAF), covalently bridged, C60 triad (C60-PDPAF-C60) is described. The molecular orbital calculations revealed that the majority of the highest occupied molecular orbital (HOMO) is located on the polyfluorene entity, while the lowest unoccupied molecular orbitals (LUMO) are found to be entirely on the C60 entity. The excited-state electron-transfer processes were monitored by both steady-state and time-resolved emission as well as by transient absorption techniques in toluene and benzonitrile. By excitation of the polyfluorene moiety, fluorescence quenching of the singlet excited state of polyfluorene moiety was observed. The nanosecond transient spectra in near-IR region revealed the charge-separation process from the polyfluorene moieties to the C60 moiety through the excited singlet states of polyfluorene. The lifetimes of the charge separated states were evaluated to be 20-50 ns, depending on the solvent polarity.  相似文献   

2.
Evidences of an intramolecular exciplex intermediate in a photoinduced electron transfer (ET) reaction of double-linked free-base and zinc phthalocyanine-C60 dyads were found. This was the first time for a dyad with phthalocyanine donor. Excitation of the phthalocyanine moiety of the dyads results in rapid ET from phthalocyanine to fullerene via an exciplex state in both polar and nonpolar solvents. Relaxation of the charge-separated (CS) state Pc(*+)-C60(*-) in a polar solvent occurs directly to the ground state in 30-70 ps. In a nonpolar solvent, roughly 20% of the molecules undergo transition from the CS state to phthalocyanine triplet state (3)Pc*-C60 before relaxation to the ground state. Formation of the CS state was confirmed with electron spin resonance measurements at low temperature in both polar and nonpolar solvent. Reaction schemes for the photoinduced ET reactions of the dyads were completed with rate constants obtained from the time-resolved absorption and emission measurements and with state energies obtained from the fluorescence, phosphorescence, and voltammetric measurements.  相似文献   

3.
Pyrazolino[60]fullerene covalently-linked to ferrocene and N,N-dimethylaniline groups has been prepared and studied using time-resolved spectroscopic methods. The fluorescence quenching of the C(60) moiety indicates that charge-separation takes place via the singlet excited state of the C(60) moiety in both polar and non-polar solvents. The charge-separated state, in which an electron is localized on the C(60) sphere and a hole is located on the whole donor moieties of ferrocene, pyrazole, and N,N-dimethylaniline groups, has been confirmed by nanosecond transient spectra in the visible and near-IR spectral region. The lifetimes of the radical ion-pairs are as long as 30 - 50 ns in both polar and non-polar solvents.  相似文献   

4.
Synthesis, characterizations, and photophysical properties of new photoactive dyads and triads containing perylenetetracarboxylic diimide (PIm) and porphyrin (free-base porphyrin (H(2)P) and zinc porphyrin (ZnP)), in which both entities were connected with a short ether bond, were examined with the aim of using these systems for molecular photonics. The porphyrin(P)-PIm systems absorbed strongly across the visible region, which greatly matched the solar spectrum. The geometric and electronic structures of the dyads and triads were probed using density function theory method at the B3LYP/3-21G level. It was revealed that the majority of the highest-occupied molecular orbital was located on the porphyrin entity, while the lowest-unoccupied molecular orbitals were entirely on the PIm entity. The excited-state electron-transfer processes were monitored by both steady-state and time-resolved emission as well as transient-absorption techniques in polar solvent benzonitrile. Upon excitation of the P (H(2)P and ZnP) moieties, efficient fluorescence quenching of the P moiety was observed, suggesting that the main quenching paths involved charge separation from the excited singlet porphyrin ((1)P) to the PIm moiety. Upon excitation of the PIm moiety, fluorescence quenching of the (1)PIm moiety was also observed. The nanosecond transience of spectra in near-IR region revealed the charge separation process from the P moieties to the PIm moiety via their excited singlet states. The lifetimes of the charge-separated states were evaluated to be 7-14 ns, depending on the solvent polarity. Photosensitized electron mediation systems were also revealed in the presence of methyl viologen and sacrificial electron donor.  相似文献   

5.
Photoinduced intramolecular processes in a tricomponent molecule C60(>(CN)2-DPAF), consisting of an electron-accepting methano[60]fullerene moiety (C60>) covalently bound to an electron-donating diphenylaminofluorene (DPAF) unit via a bridging dicyanoethylenyl group [(CN)2], were investigated in comparison with (CN)2-DPAF. On the basis of the molecular orbital calculations, the lowest charge-separated state of C60(>(CN)2-DPAF) is suggested to be C60*-(>(CN)2-DPAF*+) with the negative charge localized on the fullerene cage, while the upper state is C60(>(CN)2*--DPAF*+). The excited-state events of C60(>(CN)2-DPAF) were monitored by both time-resolved emission and nanosecond transient absorption techniques. In both nonpolar and polar solvents, the excited charge-transfer state decayed mainly through initial energy-transfer process to the C60 moiety yielding the corresponding 1C60, from which charge separation took place leading to the formation of C60*-(>(CN)2-DPAF*+) in a fast rate and high efficiency. In addition, multistep charge separation from C60(>(CN)2*--DPAF*+) to C60*-(>(CN)2-DPAF*+) may be possible with the excitation of charge-transfer band. The lifetimes of C60*-(>(CN)2-DPAF*+) are longer than the previously reported methano[60]fullerene-diphenylaminofluorene C60(>(C=O)-DPAF) with the C60 and DPAF moieties linked by a methanoketo group. These findings suggest an important role of dicyanoethylenyl group as an electron mediating bridge in C60(>(CN)2-DPAF).  相似文献   

6.
A series of novel supramolecular complexes composed of a three-point binding C(60)-trispyridylporphyrin dyad (1) or C(70)-trispyridylporphyrin dyad (2) and zinc tetraphenylporphyrin (ZnP) were constructed by adopting a "covalent-coordinate" bonding approach, composed of three-point binding. The dyads and self-assembled supramolecular triads or pentads formed by coordinating the pyridine groups located on the dyads to ZnP, have been characterized by means of spectral and electrochemical techniques. The formation constants of ZnP-1 and ZnP-2 complexes were calculated as 1.4 × 10(4) M(-1) and 2.0 × 10(4) M(-1), respectively, and the Stern-Volmer quenching constants K(SV) were founded to be 2.9 × 10(4) M(-1) and 5.5 × 10(4) M(-1), respectively, which are much higher than those of other supramolecular complexes such as previously reported ZnP-3 (N-ethyl-2-(4-pyridyl)-3,4-fulleropyrrolidine). The electrochemical investigations of these complexes suggest weak interactions between the constituents in the ground state. The excited states of the complexes were further monitored by time-resolved fluorescence measurements. The results revealed that the presence of the multiple binding point dyads (1 or 2) slightly accelerated the fluorescence decay of ZnP in o-DCB relative to that of the "single-point" bound supramolecular complex ZnP-3. In comparison with 1 and 2, C(70) is suggested as a better electron acceptor relative to C(60). DFT calculations on a model of supramolecular complex ZnP-1 (with one ZnP entity) were performed. The results revealed that the lowest unoccupied molecular orbital (LUMO) is mainly located on the fullerene cage, while the highest occupied molecular orbital (HOMO) is mainly located on the ZnP macrocycle ring, predicting the formation of radical ion pair ZnP(+)˙-H(2)P-C(60)(-)˙ during photo-induced reaction.  相似文献   

7.
Three porphyrin-fullerene dyads, in which a diyne bridge links C(60) with a beta-position on a tetraarylporphyrin, have been synthesized. The free-base dyad was prepared, as well as the corresponding Zn(II) and Ni(II) materials. These represent the first examples of a new class of conjugatively linked electron donor-acceptor systems in which pi-conjugation extends from the porphyrin ring system directly to the fullerene surface. The processes that occur following photoexcitation of these dyads were examined using fluorescence and transient absorption techniques on the femtosecond, picosecond, and nanosecond time scales. In sharp contrast to the photodynamics associated with singlet excited-state decay of reference tetraphenylporphyrins (ZnTPP, NiTPP, and H(2)TPP), the diyne-linked dyads undergo ultrafast (<10 ps) singlet excited-state deactivation in toluene, tetrahydrofuran (THF), and benzonitrile (PhCN). Transient absorption techniques with the ZnP-C(60) dyad clearly show that in toluene intramolecular energy transfer (EnT) to ultimately generate C(60) triplet excited states is the dominant singlet decay mechanism, while intramolecular electron transfer (ET) dominates in THF and PhCN to give the ZnP(*+)/C(60)(*-) charge-separated radical ion pair (CSRP). Electrochemical studies indicate that there is no significant charge transfer in the ground states of these systems. The lifetime of ZnP(*+)/C(60)(*-) in PhCN was approximately 40 ps, determined by two different types of transient absorption measurement in two different laboratories. Thus, in this system, the ratio of the rates for charge separation (k(CS)) to rates for charge recombination (k(CR)), k(CS)/k(CR), is quite small, approximately 7. The fact that charge separation (CS) rates increase with increasing solvent polarity is consistent with this process occurring in the normal region of the Marcus curve, while the slower charge recombination (CR) rates in less polar solvents indicate that the CR process occurs in the Marcus inverted region. While photoinduced ET occurs on a similar time scale in a related dyad 15 in which a diethynyl bridge connects C(60) to the para position of a meso phenyl moiety of a tetrarylporphyrin, CR occurs much more slowly; i.e., k(CS)/k(CR) approximately equal to 7400. Thus, the position at which the conjugative linker is attached to the porphyrin moiety has a dramatic influence on k(CR) but not on k(CS). On the basis of electron density calculations, we tentatively conclude that unfavorable orbital symmetries inhibit charge recombination in 15 vis a vis the beta-linked dyads.  相似文献   

8.
New C60 and C70 fullerene dyads formed with 4‐amino‐1,8‐naphthalimide chromophores have been prepared by the Bingel cyclopropanation reaction. The resulting monoadducts were investigated with respect to their fluorescence properties (quantum yields and lifetimes) to unravel the role of the charge‐transfer naphthalimide chromophore as a light‐absorbing antenna and excited‐singlet‐state sensitizer of fullerenes. The underlying intramolecular singlet–singlet energy transfer (EnT) process was fully characterized and found to proceed quantitatively (ΦEnT≈1) for all dyads. Thus, these conjugates are of considerable interest for applications in which fullerene excited states have to be created and photonic energy loss should be minimized. In polar solvents (tetrahydrofuran and benzonitrile), fluorescence quenching of the fullerene by electron transfer from the ground‐state aminonaphthalimide was postulated as an additional path.  相似文献   

9.
The first example of covalently linked free-base corrole-fullerene dyads is reported. In the newly synthesized dyads, the free-energy calculations performed by employing the redox and singlet excited-state energy in both polar and nonpolar solvents suggested the possibility of electron transfer from the excited singlet state of corrole to the fullerene entity. Accordingly, steady-state and time-resolved emission studies revealed efficient fluorescence quenching of the corrole entity in the dyads. Further studies involving femtosecond laser flash photolysis and nanosecond transient absorption studies confirmed electron transfer to be the quenching mechanism, in which the electron-transfer product, the fullerene anion radical, was able to be spectrally characterized. The rate of charge separation, kCS, was found to be on the order of 10(10)-10(11) s(-1), suggesting an efficient photoinduced electron-transfer process. Interestingly, the rate of charge recombination, kCR, was slower by 5 orders of magnitude in nonpolar solvents, cyclohexane and toluene, resulting in a radical ion-pair lasting for several microseconds. Careful analysis of the kinetic and thermodynamic data using the Marcus approach revealed that this novel feature is due to appropriately positioning the energy level of the charge-separated state below the triplet states of either of the donor and acceptor entities in both polar and nonpolar solvents, a feature that was not evident in donor-acceptor dyads constructed using symmetric tetrapyrroles as electron donors.  相似文献   

10.
A new approach of probing proximity effects in porphyrin-fullerene dyads by using an axial ligand coordination controlled "tail-on" and "tail-off" binding mechanism is reported. In the newly synthesized porphyrin-fullerene dyads for this purpose, the donor-acceptor proximity is controlled either by temperature variation or by an axial ligand replacement method. In o-dichlorobenzene, 0.1 M (TBA)ClO(4), the synthesized zincporphyrin-fullerene dyads exhibit seven one-electron reversible redox reactions within the accessible potential window of the solvent and the measured electrochemical redox potentials and UV-visible absorption spectra reveal little or no ground-state interactions between the C(60) spheroid and porphyrin pi-system. The proximity effects on the photoinduced charge separation and charge recombination are probed by both steady-state and time-resolved fluorescence techniques. It is observed that in the "tail-off" form the charge-separation efficiency changes to some extent in comparison with the results obtained for the "tail-on" form, suggesting the presence of some through-space interactions between the singlet excited zinc porphyrin and the C(60) moiety in the "tail-off" form. The charge separation rates and efficiencies are evaluated from the fluorescence lifetime studies. The charge separation via the singlet excited states of zinc porphyrin in the studied dyads is also confirmed by the quick rise-decay of the anion radical of the C(60) moiety within 20 ns. Furthermore, a long-lived ion pair with lifetime of about 1000 ns is also observed in the investigated zinc porphyrin-C(60) dyads.  相似文献   

11.
The photophysical properties of two energy‐transfer dyads that are potential candidates for near‐infrared (NIR) imaging probes are investigated as a function of solvent polarity. The dyads ( FbC‐FbB and ZnC‐FbB ) contain either a free base (Fb) or zinc (Zn) chlorin (C) as the energy donor and a free base bacteriochlorin (B) as the energy acceptor. The dyads were studied in toluene, chlorobenzene, 1,2‐dichlorobenzene, acetone, acetonitrile and dimethylsulfoxide (DMSO). In both dyads, energy transfer from the chlorin to bacteriochlorin occurs with a rate constant of ~(5–10 ps)?1 and a yield of >99% in nonpolar and polar media. In toluene, the fluorescence yields (Φ f = 0.19) and singlet excited‐state lifetimes (τ~5.5 ns) are comparable to those of the benchmark bacteriochlorin. The fluorescence yield and excited‐state lifetime decrease as the solvent polarity increases, with quenching by intramolecular electron (or hole) transfer being greater for FbC‐FbB than for ZnC‐FbB in a given solvent. For example, the Φ f and τ values for FbC‐FbB in acetone are 0.055 and 1.5 ns and in DMSO are 0.019 and 0.28 ns, whereas those for ZnC‐FbB in acetone are 0.12 and 4.5 ns and in DMSO are 0.072 and 2.4 ns. The difference in fluorescence properties of the two dyads in a given polar solvent is due to the relative energies of the lowest energy charge‐transfer states, as assessed by ground‐state redox potentials and supported by molecular‐orbital energies derived from density functional theory calculations. Controlling the extent of excited‐state quenching in polar media will allow the favorable photophysical properties of the chlorin–bacteriochlorin dyads to be exploited in vivo. These properties include very large Stokes shifts (85 nm for FbC‐FbB , 110 nm for ZnC‐FbB ) between the red‐region absorption of the chlorin and the NIR fluorescence of the bacteriochlorin (λ f = 760 nm), long bacteriochlorin excited‐state lifetime (~5.5 ns), and narrow (≤20 nm) absorption and fluorescence bands. The latter will facilitate selective excitation/detection and multiprobe applications using both intensity‐ and lifetime‐imaging techniques.  相似文献   

12.
Photoinduced intramolecular charge-separation and charge-recombination processes in covalently connected C(60)-(spacer)-bis(biphenyl)aniline (C(60)-sp-BBA) and C(60)-((spacer)-bis(biphenyl)aniline)(2) (C(60)-(sp-BBA)(2)) have been studied by time-resolved fluorescence and transient absorption methods. Since a flexible alkylthioacetoamide chain was employed as the spacer, the folded structures in which the BBA moiety approaches the C(60) moiety were obtained as optimized structures by molecular orbital calculations. The observed low fluorescence intensity and the short fluorescence lifetime of the C(60) moiety of these molecular systems indicated that charge separation takes place via the excited singlet state of the C(60) moiety in a quite fast rate and high efficiency even in the nonpolar solvent toluene, which was a quite new observation compared with reported dyads with different spacers. From the absorption bands at 880 and 1000 nm in the nanosecond transient absorption spectra, generations of C(60)(.-)-sp-BBA(.+) and C(60)(.-)-(sp-BBA(.+))(sp-BBA) were confirmed. The rates of charge separation and charge recombination for C(60)-(sp-BBA)(2) are faster than those for C(60)-sp-BBA, suggesting that one of the BBA moieties approaches the C(60) moiety by pushing another BBA moiety because of the flexible spacers.  相似文献   

13.
A detailed study of the synthesis and photophysical properties of a new series of dipolar organic photosensitizers that feature a 1,3‐cyclohexadiene moiety integrated into the π‐conjugated structural backbone has been carried out. Dye‐sensitized solar cells (DSSCs) based on these structurally simple dyes have shown appreciable photo‐to‐electrical energy conversion efficiency, with the highest one up to 4.03 %. Solvent‐dependent fluorescence studies along with the observation of dual emission on dye 4 b and single emission on dyes 4 a and 32 suggest that dye 4 b possesses a highly polar emissive excited state located at a lower‐energy position than at the normal emissive excited state. A detailed photophysical investigation in conjunction with computational studies confirmed the twisted intramolecular charge‐transfer (TICT) state to be the lowest emissive excited state for dye 4 b in polar solvents. The relaxation from higher‐charge‐injection excited states to the lowest TICT state renders the back‐electron transfer process a forbidden one and significantly retards the charge recombination to boost the photocurrent. The electrochemical impedance under illumination and transient photovoltage decay studies showed smaller charge resistance and longer electron lifetime in 4 b ‐based DSSC compared to the DSSCs with reference dyes 4 a and 32 , which further illustrates the positive influence of the TICT state on the performance of DSSCs.  相似文献   

14.
Photoinduced electron-transfer processes of the newly synthesized [60]fullerene-diphenylbenzothiadiazole-triphenylamine (C60-PBTDP-TPA) triad in polar and nonpolar solvents have been studied by using time-resolved transient absorption and fluorescence measurements from picosecond to microsecond regions. By fluorescence lifetime measurements in picosecond time regions, excitation of the charge-transfer transition of the PBTDP-TPA moiety in C60-PBTDP-TPA induces energy transfer to the C60 moiety generating 1C60*-PBTDP-TPA, competitively with charge separation generating C60*--PBTDP-TPA*+. From 1C60*-PBTDP-TPA, which is generated directly and indirectly, charge separation occurs generating C60*--PBTDP-TPA*+ in polar solvents. The C60*--PBTDP-TPA*+ formed via the singlet excited states decayed within a few nanoseconds as revealed by the picosecond transient absorption spectra. In the nanosecond time region, C60*--PBTDP-TPA*+ is produced slowly, probably via 3C60*-PBTDP-TPA. Lifetimes of such slowly generated C60*--PBTDP-TPA*+ were longer than 1 micros, which are the longest values among the C60-bridge-TPA triad systems reported hitherto at room temperature. Roles of the PBTDP-TPA moiety with twisted intermolecular charge-transfer character playing as energy donor and electron donor in addition to the bridge have been disclosed.  相似文献   

15.
Spectroscopic, redox, and electron transfer reactions of a self-assembled donor-acceptor dyad formed by axial coordination of magnesium meso-tetraphenylporphyrin (MgTPP) and fulleropyrrolidine appended with an imidazole coordinating ligand (C(60)Im) were investigated. Spectroscopic studies revealed the formation of a 1:1 C(60)Im:MgTPP supramolecular complex, and the anticipated 1:2 complex could not be observed because of the needed large amounts of the axial coordinating ligand. The formation constant, K(1), for the 1:1 complex was found to be (1.5 +/- 0.3) x 10(4) M(-1), suggesting fairly stable complex formation. The geometric and electronic structures of the dyads were probed by ab initio B3LYP/3-21G() methods. The majority of the highest occupied frontier molecular orbital (HOMO) was found to be located on the MgTPP entity, while the lowest unoccupied molecular orbital (LUMO) was on the fullerene entity, suggesting that the charge-separated state of the supramolecular complex is C(60)Im(*-):MgTPP(*+). Redox titrations involving MgTPP and C(60)Im allowed accurate determination of the oxidation and reduction potentials of the donor and acceptor entities in the supramolecular complex. These studies revealed more difficult oxidation, by about 100 mV, for MgTPP in the pentacoordinated C(60)Im:MgTPP compared to pristine MgTPP in o-dichlorobenzene. A total of six one-electron redox processes corresponding to the oxidation and reduction of the zinc porphyrin ring and the reduction of fullerene entities was observed within the accessible potential window of the solvent. The excited state events were monitored by both steady state and time-resolved emission as well as transient absorption techniques. In o-dichlorobenzene, upon coordination of C(60)Im to MgTPP, the main quenching pathway involved electron transfer from the singlet excited MgTPP to the C(60)Im moiety. The rate of forward electron transfer, k(CS), calculated from the picosecond time-resolved emission studies was found to be 1.1 x 10(10) s(-1) with a quantum yield, Phi(CS), of 0.99, indicating fast and efficient charge separation. The rate of charge recombination, k(CR), evaluated from nanosecond transient absorption studies, was found to be 8.3 x 10(7) s(-1). A comparison between k(CS) and k(CR) suggested an excellent opportunity to utilize the charge-separated state for further electron-mediating processes.  相似文献   

16.
A series of zinc porphyrin–[60]fullerene dyads linked by conformation-constrained tetrasilanes and permethylated tetrasilane have been synthesized for the evaluation of the conformation effect of the tetrasilane linkers on the photoinduced electron transfer. The excited-state dynamics of these dyads have been studied using the time-resolved fluorescence and absorption measurements. The fluorescence of the zinc porphyrin moiety in each dyad was quenched by the electron transfer to the fullerene moiety. The transient absorption measurements revealed that the final state of the excited-state process was a radical ion pair with a radical cation on the zinc porphyrin moiety and a radical anion on the fullerene moiety as a result of the charge separation. The charge separation and charge recombination rates were found to show only slight conformation dependence of the tetrasilane linkers, which is characteristic for the Si-linkages.  相似文献   

17.
Supramolecular ferrocene-porphyrin-fullerene constructs, in which covalently linked ferrocene-porphyrin-crown ether compounds were self-assembled with alkylammonium cation functionalized fullerenes, have been designed to achieve stepwise electron transfer and hole shift to generate long-lived charge separated states. The adopted crown ether-alkylammonium cation binding strategy resulted in stable conjugates as revealed by computational studies performed by the DFT B3LYP/3-21G(*) method in addition to the binding constants obtained from fluorescence quenching studies. The free-energy changes for charge-separation and charge-recombination were varied by the choice of different metal ions in the porphyrin cavity. Free-energy calculations suggested that the light-induced electron-transfer processes from the singlet excited state of porphyrins to be exothermic in all of the investigated supramolecular dyads and triads. Photoinduced charge-separation and charge-recombination processes have been confirmed by the combination of the time-resolved fluorescence and nanosecond transient absorption spectral measurements. In case of the triads, the charge-recombination processes of the radical anion of the fullerene moiety take place in two steps, viz., a direct charge recombination from the porphyrin cation radical and a slower step involving distant charge recombination from the ferrocene cation moiety. The rates of charge recombination for the second route were found to be an order of magnitude slower than the former route, thus fulfilling the condition for charge migration to generate long-lived charge-separated states in supramolecular systems.  相似文献   

18.
《Mendeleev Communications》2021,31(6):807-809
Two new heptamethine cyanine dye–fullerene C60 covalently- linked dyads, which absorb in far-red and NIR spectral regions, have been synthesized by esterification click reaction and characterized by physicochemical methods. No significant fluorescence quenching was found due to weak electronic coupling between heptamethine moiety and fullerene core, which was confirmed by photophysical and electrochemical methods. Such dyads can be useful for cell imaging and fluorescence diagnostics of various fullerene derivatives.  相似文献   

19.
The cyclophane-type molecular dyads 1 x 2H and 1 x Zn, in which a doubly bridged porphyrin donor adopts a close, tangential orientation relative to the surface of a fullerene acceptor, were prepared by Bingel macrocylization. The porphyrin derivatives 2 x 2H and 2 x Zn with two appended, singly linked C60 moieties were also formed as side products. NMR investigations revealed that the latter compounds strongly prefer conformations with one of the carbon spheres nesting on the porphyrin surface, thereby taking a similar orientation to that of the fullerene moiety in the doubly bridged systems. Cyclic voltammetric measurements showed that the mutual electronic effects exerted by the fullerene on the porphyrin and vice versa are only small in all four dyads, despite the close proximity of the donor and acceptor components. The steady-state and time-resolved absorption and luminescence properties of 1 x Zn and 2 x Zn were investigated in toluene solution and it was shown that, upon light excitation, both the porphyrin- and the fullerene-centered excited states are deactivated to a lower-lying CT state, emitting in the IR spectral region (lambda max = 890 and 800 nm at 298 and 77 K, respectively). In the more polar solvent benzonitrile, this CT state is still detected but, owing to its very low energy (below 1.4 eV), is not luminescent and shorter-lived than in toluene. The remarkable observation of similar photophysical behavior of 1 x Zn and 2 x Zn suggests that a tight donor-acceptor distance cannot only be established in doubly bridged cyclophane-type structures but also in singly bridged dyads, by taking advantage of favourable fullerene-porphyrin ground-state interactions.  相似文献   

20.
Photoinduced electron-transfer processes between fullerene (C60) and 1,8-bis(dimethylamino)naphthalene, which is called a proton-sponge (PS), have been investigated by means of laser flash photolysis in the presence and absence of CF3CO2H. For a mixture of C60 and PS, the transient absorption spectra showed the rise of the C60 radical anion with concomitant decay of the C60 triplet (3C60), suggesting that photoinduced intermolecular electron transfer occurs via 3C60 in high efficiency in polar solvent. For a covalently bonded C60-PS dyad, photoinduced intramolecular charge-separation process takes place via the excited singlet state of the C60 moiety, although charge recombination occurs within 10 ns. For both systems, electron-transfer rates were largely decelerated by addition of a small amount of CF3CO2H, leaving the long-lived 3C60. These observations indicate that the energy levels for charge-separated states of the protonated PS and C60 become higher than the energy level of the 3C60 moiety, showing low donor ability of the protonated PS. Thus, intermolecular electron-transfer process via 3C60 for C60-PS mixture and intramolecular charge-separation process via 1C60-PS for C60-PS dyad were successfully controlled by the combination of the light irradiation with a small amount of acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号