首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
Mesoporous hybrid silica bearing zwitterionic species were synthesized via template-directed hydrolysis-polycondensation reactions from zwitterionic ammonium sulfonate precursors. The formation of the nanostructured phases involves specific precursor-template interactions. The obtained materials are efficient heterogeneous catalysts in Biginelli reactions.  相似文献   

2.
Periodic mesoporous organosilica with a heterocyclic bridging group of large molecular weight, tris[3-(trimethoxysilyl)propyl]isocyanurate, is reported. Incorporation of an organic moiety into the silica framework afforded material attractive for adsorption of mercury and related heavy metal ions from aqueous solutions.  相似文献   

3.
Periodic mesoporous organosilica (PMO) hollow spheres with tunable wall thickness have been successfully synthesized by a new vesicle and a liquid crystal "dual templating" mechanism, which may be applicable for drug and DNA delivery systems, biomolecular encapsulation, as well as nanoreactors for conducting biological reactions at the molecular levels.  相似文献   

4.
5.
Adsorption characteristics of organosilica based mesoporous materials   总被引:1,自引:0,他引:1  
Hybrid organosilica mesoporous materials with pores of ordered three-dimensional hexagonal structure were prepared by the hydrolysis and co-condensation of 1,2-bis(triethoxysilyl)ethane with various concentrations of a surfactant as structure directing agents. The materials had high pore volume of 1-1.5 mL/g and high surface area from 1057 to 1445 m(2)/g. Adsorption measurement and adsorption calorimetry revealed that the prepared materials exhibited high hydrophobicity and high affinity toward nonpolar organic vapor such as n-hexane. The dynamic adsorption properties of the materials for n-hexane in the presence of water vapor showed that these hybrid organosilica materials preferentially adsorbed n-hexane vapor and were stable in the presence of water compared to the siliceous MCM48.  相似文献   

6.
Silanol species in phenylene-bridged periodic mesoporous organosilica (PMO), templated via tri-block copolymer Pluronic P123 and thus characterized by large pores and amorphous wall structure, have been characterized by means of FT-IR spectroscopy. Investigation has been carried out on both the naked sample outgassed at different temperatures and the sample when interacting with molecular probes able to form H-bonding (ammonia and carbon monoxide). After outgassing at 773 K, the material shows both isolated silanols and silanols engaged in "intraframework" H-bonding with the pi-cloud of structural aromatic rings. Interaction with ammonia showed that a fraction of these species is inaccessible, being probably located inside the pore walls. Thermal treatment above 673 K causes the appearance of SiO3(OH) species formed as a consequence of the cleavage of some Si-C bonds. The presence of hydroxyls slightly more acidic than isolated silanols has been evidenced: these are interpreted as perturbed geminal species.  相似文献   

7.
Diphenylene moieties, molecularly ordered in the framework of periodic mesoporous organosilicas, behave as molecular rotors and show a mobility with correlation times as short as a few nanoseconds.  相似文献   

8.
Nanocrystalline cellulose (NCC) has been used to template ethylene-bridged mesoporous organosilica films with long-range chirality and photonic properties. The structural color of the organosilica films results from their chiral nematic ordering, can be varied across the entire visible spectrum, and responds to the presence of chemicals within the mesopores. To synthesize these materials, acid hydrolysis was used to remove the NCC template without disrupting the organosilica framework. The resulting mesoporous organosilica films are much more flexible than brittle mesoporous silica films templated by NCC. These materials are the first of a novel family of chiral mesoporous organosilicas with photonic properties.  相似文献   

9.
Water‐medium organic reactions were studied over periodic mesoporous silica (PMO) containing Pd(II) organometallic complex. This heterogeneous catalyst was achieved by Pd(II) compound coordinated with the PPh2‐ligand onto the pore surface of phenylene‐bridged PMO support. This catalyst displayed ordered mesoporous channels, which ensured the high dispersion of Pd(II) active sites and the convenient diffusion of reactant molecules into the pore channels. Meanwhile, the phenyl group in the pore wall of PMO could enhance the surface hydrophobicity which promoted the adsorption of organic reactant molecules on the catalyst in aqueous environment. As a result, this elaborated catalyst exhibited comparable activity and selectivity with the corresponding PdCl2(PPh3)2 homogeneous catalyst in the water‐medium organic reactions, and could be used repeatedly, showing a good potential in industrial applications. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
A novel procedure was developed for the synthesis of a periodic mesoporous organosilica (PMO), which was used to remove polycyclic aromatic hydrocarbons (PAHs) from aqueous solutions. Adsorption equilibrium isotherms and adsorption kinetics experiments were carried out in solutions of PAHs (2-60 mg L(-1)), using the PMO as adsorbent. Adsorption models were used to predict the mechanisms involved. The adsorption kinetics data best fitted the pseudo-first-order kinetic model for naphthalene, and to the pseudo-second-order model for fluorene, fluoranthene, pyrene, and acenaphtene. The intraparticle model was also tested and pointed to the occurrence of such processes in all cases. The isotherm models which best represented the data obtained were the Freundlich model for fluoranthene, pyrene, and fluorene, the Temkin model for naphthalene, and the Redlich-Peterson model for acenaphtene. PAHs showed similar behavior regarding kinetics after 24 h of contact between adsorbent and PAHs. FTIR, XRD, BET, and SEM techniques were used for the characterization of the adsorbent material.  相似文献   

11.
Low-k periodic mesoporous organosilica with air walls: POSS-PMO   总被引:1,自引:0,他引:1  
Periodic mesoporous organosilica (PMO) with polyhedral oligomeric silsesquioxane (POSS) air pockets integrated into the pore walls has been prepared by a template-directed, evaporation-induced self-assembly spin-coating procedure to create a hybrid POSS-PMO thin film. A 10-fold increase in the porosity of the POSS-PMO film compared to a reference POSS film is achieved by incorporating ~1.5 nm pores. The increased porosity results in a decrease in the dielectric constant, k, which goes from 2.03 in a reference POSS film to 1.73 in the POSS-PMO film.  相似文献   

12.
Periodic mesoporous organosilica based on alkylimidazolium ionic liquid (PMO-IL) was prepared and used as a highly porous fiber coating material for solid-phase microextraction (SPME). The prepared nanomaterial was immobilized onto a stainless steel wire for fabrication of the SPME fiber. The fiber was evaluated for the extraction of some polycyclic aromatic hydrocarbons (PAHs) from aqueous sample solutions in combination with gas chromatography–mass spectrometry (GC–MS). A one at-the-time optimization strategy was applied for optimizing the important extraction parameters such as extraction temperature, extraction time, ionic strength, stirring rate, and desorption temperature and time. In optimum conditions, the repeatability for one fiber (n = 3), expressed as relative standard deviation (R.S.D.%), was between 4.3% and 9.7% for the test compounds. The detection limits for the studied compounds were between 4 and 9 pg mL−1. The developed method offers the advantage of being simple to use, with shorter analysis time, lower cost of equipment, thermal stability of fiber and high relative recovery in comparison to conventional methods of analysis.  相似文献   

13.
Periodic mesoporous organosilicas (PMOs) were prepared by cooperative assembly with corresponding organosilane precursors in the presence of surfactants. Recently, approaches for the preparation of a new class of porphrin-bridged PMOs have been developed. Porphyrin-bridged PMOs were synthesized by direct co-condensation using a thermal sol–gel method or a rapid microwave-assisted method with tetrakis(carboxyphenyl)porphyrin(TCPP)-silsesquioxane (TCPPS) and various silica sources in the presence of templates. These porphyrin PMO exhibited high catalytic activities and selectivity and could be used repeatedly in many kinds of applications owing to easy accessibility, rapid diffusion, and favorable mass transfer for substrates into and out of the mesopores. In addition, the TCPPS incorporated into the PMO walls could effectively defend damage of the ordered structure and also inhibit the leaching of active sites. The current review deals with recent development in the synthesis, characterization, and applications such as hydrogenation, photocatalysis, chiral catalysis, and Baeyer–Villiger oxidation of each of these types of porphyrin-bridged periodic mesoporous silica materials.  相似文献   

14.
Enhanced fluorescence detection of metal ions was realized in a system consisting of a fluorescent 2,2′‐bipyridine (BPy) receptor and light‐harvesting periodic mesoporous organosilica (PMO). The fluorescent BPy receptor with two silyl groups was synthesized and covalently attached to the pore walls of biphenyl (Bp)‐bridged PMO powder. The fluorescence intensity from the BPy receptor was significantly enhanced by the light‐harvesting property of Bp‐PMO, that is, the energy funneling into the BPy receptor from a large number of Bp groups in the PMO framework which absorbed UV light effectively. The enhanced emission of the BPy receptor was quenched upon the addition of a low concentration of Cu2+ (0.15–1.2×10?6 M ), resulting in the sensitive detection of Cu2+. Upon titration of Zn2+ (0.3–6.0×10?6 M ), the fluorescence excitation spectrum was systematically changed with an isosbestic point at 375 nm through 1:1 complexation of BPy and Zn2+ similar to that observed in BPy‐based solutions, indicating almost complete preservation of the binding property of the BPy receptor despite covalent fixing on the solid surface. These results demonstrate that light‐harvesting PMOs have great potential as supporting materials for enhanced fluorescence chemosensors.  相似文献   

15.
Phenyl-functionalized mesoporous ethane-silicas with spherical morphology were synthesized by one-step co-condensation of phenyltrimethoxysilane (PTMS) and 1,2-bis(trimethoxysily)ethane (BTME) using a triblock copolymer EO(20)PO(70)EO(20) (P123) as template with the aid of a co-surfactant (cetyltrimethylammonium bromide, CTAB) and a co-solvent (ethanol) in acidic medium. Powder X-ray diffraction (XRD), nitrogen sorption measurement and scanning electron microscopy (SEM) show that phenyl-functionalized ethane-silica has wormhole-like mesostructure and perfect spherical morphology. The chemical stability of phenyl-functionalized mesoporous ethane-silica in basic medium is greatly improved owing to the ethane groups bridged in the mesoporous framework. This work also demonstrates that the phenyl-functionalized mesoporous ethane-silica spheres are excellent packing materials for potential application in the reversed-phase high-performance liquid chromatography (HPLC).  相似文献   

16.
The synthesis and characterization of novel electroactive periodic mesoporous organosilica (PMO) are reported. The silsesquioxane precursor, N,N'-bis(4'-(3-triethoxysilylpropylureido)phenyl)-1,4-quinonene-diimine (TSUPQD), was prepared from the emeraldine base of amino-capped aniline trimer (EBAT) using a one-step coupling reaction and was used as an organic silicon source in the co-condensation with tetraethyl orthosilicate (TEOS) in proper ratios. By means of a hydrothermal sol-gel approach with the cationic surfactant cetyltrimethyl-ammonium bromide (CTAB) as the structure-directing template and acetone as the co-solvent for the dissolution of TSUPQD, a series of novel MCM-41 type siliceous materials (TSU-PMOs) were successfully prepared under mild alkaline conditions. The resultant mesoporous organosilica were characterized by Fourier transform infrared (FT-IR) spectroscopy, thermogravimetry, X-ray diffraction, nitrogen sorption, and transmission electron microscopy (TEM) and showed that this series of TSU-PMOs exhibited hexagonally patterned mesostructures with pore diameters of 2.1-2.8 nm. Although the structural regularity and pore parameters gradually deteriorated with increasing loading of organic bridges, the electrochemical behavior of TSU-PMOs monitored by cyclic voltammetry demonstrated greater electroactivities for samples with higher concentration of the incorporated TSU units.  相似文献   

17.
Periodic mesoporous benzene-silicas with large pores of 6.0 to 7.4 nm in diameter are synthesized using triblock copolymer as a template. These mesoporous materials have a well-defined hexagonal rod morphology and high thermal stability up to 823 K in air.  相似文献   

18.
Highly ordered rod-like large-pore periodic mesoporous organosilica (PMO) was successfully synthesized at low acid concentration with the assistance of inorganic salt using triblock copolymer P123 as a template. The roles of inorganic salt and acidity in the production of highly ordered mesostructure and the morphology control of PMOs were investigated. It was found that the inorganic salt can significantly widen the range of the synthesis parameters to produce highly ordered 2D hexagonal pore structure of p6mm symmetry. However, the uniform rod-like PMOs can only be synthesized in a narrow range of acid and salt concentrations, which were sensitive to induction time. The adsorption of lysozyme on PMO was studied at different pH values in comparison with adsorption on pure silica material under controlled morphology and pore structure. It was found that the adsorption capacity of lysozyme on the PMO was lower than that on pure SBA-15 silica material and the adsorption amounts are larger at pH 9.6 than at 7.0 for both materials. The results show that the electrostatic interaction between lysozyme and PMO/SBA-15 surface is more dominant than the hydrophobic forces and the interaction of neighboring lysozyme molecules also plays an important role.  相似文献   

19.
Herein we report on the mechanism of formation of a hybrid phenylene-bridged hexagonally ordered mesoporous organosilica with crystal-like walls (CW-Ph-HMM). Electron microscopy and X-Ray diffraction studies indicate that the formation of CW-Ph-HMM involves the surfactant-mediated hydrothermal transformation of an amorphous organosilica precursor and that the final product is hierarchically ordered. Significantly, the material is in the form of submicrometre-thick sheets that consist of co-aligned aggregates of needle-like particles (up to 500 nm in length and 50 nm in width). The results suggest that preferential growth along the channel direction of the hexagonally ordered mesostructure is coupled with the propagation of molecular periodicity in the pore walls. Together, these factors give rise to the growth of highly anisotropic primary nanofilaments that become co-aligned to produce micrometer-thick sheets consisting of a periodic array of mesoscopic channels oriented perpendicular to the surface of the flake-like particles.  相似文献   

20.
A novel spirobifluorene-bridged allylsilane precursor, which can be easily purified by silica gel chromatography, was prepared by using a new molecular building block for allylsilane sol-gel precursors (MBAS) and successfully converted into a highly fluorescent periodic mesoporous organosilica film.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号