首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In situ infrared visible sum frequency generation spectroscopy (SFG) is used to examine the structure of water at the Ag-water interface in NaF and KF electrolyte solutions. Water is observed in environments associated with both the electrode surface and the diffuse double layer. Peaks are observed that are correlated with low-order water, water interacting with electrolyte ions, specifically adsorbed water to the electrode surface, and hydronium. Spectra obtained from a thiol-modified Ag surface enabled discrimination between surface-bound water and that in the double layer. The water organization is dependent on applied potential, with the observed intensities for specifically adsorbed and ion solvating water diminishing near the pzc.  相似文献   

2.
Molecular encapsulation of water-soluble anionic fluorescent dye molecules, 8-anilino-1-naphthalenesulfonic acid (ANS), and its bimolecular derivative (bis-ANS), in the generation 3.5 polyamidoamine (G3.5 PAMAM) dendrimer was investigated in the bulk aqueous phase and at the polarized water|1,2-dichloroethane interface. ANS(-) was electrostatically incorporated in the dendrimer, and the fluorescence enhancement with a blue shift of the emission maximum was observed at pH values <6, where the interior of the dendrimer was positively charged. The fluorescence enhancement of ANS was maximized around pH 3 and then decreased under more acidic conditions. The potential dependences of the molecular encapsulation and the interfacial mechanism were studied in detail by means of potential modulated fluorescence (PMF) spectroscopy. Under acidic conditions, the dendrimer incorporated ANS(-) at the positively polarized interface as well as in the aqueous phase. ANS(-) was released from the dendrimer at the intrinsic transfer potential and independently transferred across the interface. Bis-ANS exhibited relatively strong interaction with the dendrimer over a wide pH range (1 < pH < 8), and a negative shift of the transfer potential was observed under the corresponding pH condition. The PMF analysis clearly demonstrated that the interfacial mechanism of the dendrimer involves transfer and adsorption processes depending on the pH condition and the Galvani potential difference.  相似文献   

3.
Poly(amidoamine) dendrimers are very interesting macromolecules with highly branched structures and globular-shaped branched polymeric architectures. They are widely used for drug and gene delivery applications. In order to provide important insight into the interactions of poly(amidoamine) dendrimers with some organic acceptors, the binding of small molecules to 4-hexylamino-1,8-naphthalimide-labelled PAMAM dendrimer (PD) have been studied by spectrophotomeric method. The acceptors used in this research include chloranilic acid (CLA), p-chloranil (CHL), 2,6-dichloroquinone-4-chloroimide (DCQ), 2,6-dibromoquinone-4-chloroimide (DBQ), 7,7?,8,8?-tetracyanoquinodimethane (TCNQ), picric acid (PA), 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) and iodine monobromide (IBr). The spectrophotometric measurements proved that all the charge-transfer (CT) complexes are formed via a stoichiometry (PD: acceptor) of 1:2 (except for IBr acceptor). Accordingly the obtained complexes could be formulated as [(PD)(CLA)2], [(PD)(DCQ)2], [(PD)(DBQ)2], [(PD)(TCNQ)2], [(PD)(PA)2], [(PD)(CHL)2], [(PD)(DDQ)2] and [(PD)(IBr)4]. Benesi–Hildebrand and its modification methods were applied to estimate the spectroscopic and physical data.  相似文献   

4.
The synthesis of a generation 5 (G5) poly(amidoamine) (PAMAM) dendrimer platform having cyclooctyne ligands that were subsequently be used for a copper-free Huisgen 1,3-dipolar cycloaddition (click reaction) with azido modified methotrexate is described. The G5 PAMAM dendrimer was first partially (70%) acetylated and then coupled with 20 cyclooctyne ligands through amide bonds. The remaining primary amine groups on the dendrimer surface were neutralized by acetylation. The platform was then ‘clicked’ with different numbers (5, 10, and 17) of γ-azido functionalized methotrexate. The copper-free click reactions were stoichiometric with excellent yields.  相似文献   

5.
The interaction kinetics of polyamidoamine (PAMAM) dendrimers with supported lipid bilayers of 1,2-sn-glycero-dimyristoylphosphocholine prepared by the vesicle deposition has been probed by optical waveguide lightmode spectroscopy and atomic force microscopy (AFM). In particular, the influence of PAMAM dendrimer generation (G2, G4, and G6) and concentration (1 to 100 nM) on the levels of adsorption and lipid bilayer removal have been determined as a function of time; hence interaction kinetics and mechanisms have been further elucidated. Dendrimer interaction kinetics with the lipid bilayer are concentration dependent in a complex manner, with net bilayer removal at 1 and 100 nM and net adsorption at 10 nM; these effects are irrespective of dendrimer generation. The pseudo first order rate constant for bilayer removal (at 1 and 100 nM) follows the order G6 > G4 > G2. In contrast, the pseudo first order rate constant for adsorption at 10 nM follows the order G2 > G4 > G6. AFM has confirmed expansion of lipid bilayer defects, hole formation, and adsorption to the bilayer or bilayer defects, and their concentration and generation dependence. These findings have implications when designing dendrimers for specific biopharmaceutical activities, e.g., as drugs, drug delivery vehicles, transfection agents, or antimicrobials.  相似文献   

6.
Starburst dendrimer polyamidoamine (PAMAM) with ellipsoidal or spheroidal shape is structure-regular and has much more amino groups than conventional polymers. This paper investigates the possibility of these amino groups on water dissociation in a bipolar membrane interface. To do this, a bipolar membrane is prepared by casting the solution of sulfonated poly(phenylene oxide) (SPPO) in dimethyl formamide (DMF) on a commercial anion exchange membrane that is immersed in PAMAM aqueous solution in advance. The existence of PAMAM adsorbed on the membrane is proved by X-ray photoelectron spectroscopy (XPS), and the adsorption amount is evaluated by weighting method. The junction thickness of the prepared bipolar membrane is determined by electrochemical impedance spectroscopy (EIS), and the performance is evaluated by current–voltage curves. The experiments show that both the generation and concentration of PAMAM would strongly affect the characteristics of the bipolar membranes. There exists a transitional concentration for various generations PAMAMs to catalyze effectively the water dissociation, and above or below the transitional concentration the performance of bipolar membranes is decreasing. The higher the generation, the lower the concentration. Moreover, at a fixed solution concentration, there is not the simple relation of monotone decreasing or increasing between the performance of bipolar membranes and the generations of PAMAMs. All these can be explained according to the characteristics of PAMAMs combined with available water dissociation theory.  相似文献   

7.
A nanoscale multivalent platinum drug based on a poly(amidoamine) [PAMAM] dendrimer (generation 4.5, carboxylate surface) has been synthesized and fully characterized using a variety of spectroscopic, chromatographic and thermal methods. Treatment of the dendrimer with an aqueous solution containing an excess diaquo(cis-1,2-diaminocyclohexane)platinum(II) produces a conjugate containing approximately forty (diaminocyclohexane)platinum(II) moieties at the surface of the dendrimer. This material undergoes smooth two-stage thermal decomposition to provide residual platinum oxide reflecting the platinum loading in the drug.  相似文献   

8.
The surface chemistry of ions, water molecules, and proteins as well as their ability to form stable networks in foams can influence and control macroscopic properties such as taste and texture of dairy products considerably. Despite the significant relevance of protein adsorption at liquid interfaces, a molecular level understanding on the arrangement of proteins at interfaces and their interactions has been elusive. Therefore, we have addressed the adsorption of the model protein bovine serum albumin (BSA) at the air-water interface with vibrational sum-frequency generation (SFG) and ellipsometry. SFG provides specific information on the composition and average orientation of molecules at interfaces, while complementary information on the thickness of the adsorbed layer can be obtained with ellipsometry. Adsorption of charged BSA proteins at the water surface leads to an electrified interface, pH dependent charging, and electric field-induced polar ordering of interfacial H(2)O and BSA. Varying the bulk pH of protein solutions changes the intensities of the protein related vibrational bands substantially, while dramatic changes in vibrational bands of interfacial H(2)O are simultaneously observed. These observations have allowed us to determine the isoelectric point of BSA directly at the electrolyte-air interface for the first time. BSA covered air-water interfaces with a pH near the isoelectric point form an amorphous network of possibly agglomerated BSA proteins. Finally, we provide a direct correlation of the molecular structure of BSA interfaces with foam stability and new information on the link between microscopic properties of BSA at water surfaces and macroscopic properties such as the stability of protein foams.  相似文献   

9.
Cyclic voltammograms and interfacial tension-applied potential curves were recorded at the interface between water containing surface-active bis-quaternary ammonium ions, bis-A(2+), and an organic solvent such as 1,2-dichloroethane or nitrobenzene. An ordinary diffusion-controlled voltammetric wave for the transfer of bis-A(2+) from aqueous phase to organic phase, the first wave, was followed by a typical adsorption-related wave, the second wave. It was found from the potential dependence of the interfacial tension of bis-A(2+) that the second wave was due to the desorption of bis-A(2+) toward the organic phase. The influence of the structure of bis-A(2+) on voltammograms was investigated, and the potential for the first wave was found to depend on both the length of the side chain and that of the spacer chain, whereas the potential for the second wave depended on the latter only. The thermodynamic relations among three processes of the ion transfer, adsorption, and desorption were discussed based on the experimental results.  相似文献   

10.
PVP and G1.5 PAMAM dendrimer co-mediated silver nanoparticles of smaller than 5 nm in diameter were prepared using H2 as reducing agent. With the TEM micrograph, it was found that the molar ratios of PVP and G1.5 PAMAM dendrimer have significant effect in the morphology and size distribution of silver nanoparticles. The reaction rate (fitting a first-order equation) was strongly influenced by the molar ratios of PVP and G1.5 PAMAM dendrimer and the reaction temperature. From the UV-Vis spectra of an aqueous solution of silver nanoparticles, they could be stored for at least 2 months without coagulation at room temperature.  相似文献   

11.
Gold-silver binary nanoparticles, which feed atomic ratios of gold to silver were 3:1, 1:1, and 1:3, were prepared. These particles were stabilized by amine-terminated (generation (G) 3.0 and 5.0) and carboxyl-terminated (G 3.5 and 5.5) poly(amidoamine) (PAMAM) dendrimers in water. UV-vis spectra indicate that the particles are not mere physical mixtures of monometallic particles or core/shell type but alloy. According to transmission electron microscope (TEM) observation, the mean diameters of the particles were 7-10 nm for silver particles and 3-4 nm for both gold and alloy particles, respectively. Catalytic activities for reduction of p-nitrophenol were investigated by monitoring the absorbance at 400 nm during the reaction. They were proportional to the feed ratio of gold in the particles and showed a maximum at the ratio of Au:Ag=3:1.  相似文献   

12.
Much progress has been made in the treatment of cancer. However, it remains a significant challenge to treat as toxic chemotherapeutic drugs are often poorly tolerated when administered together, limiting the patient’s treatment options. A possible solution to this problem is anchoring drugs on the surface of nanoparticles. These systems have a variety of structures with sizes, shapes and materials which determine loading capacity, cellular targeting and stability. Dendrimers are a class of nanoparticles which have been investigated in this context. In this study, we investigated the functionalization of polyamidoamine (PAMAM) dendrimers with some anticancer medications that suppresses the growth of cancer cells (carmustine, lomustine, semustine and melphalan; 1–4). The possibility of drug release, drug delivery and drug separation by PAMAM was theoretically investigated and discussed. The predicted theoretical method will be interesting to remove the pollutants from the medical solutions by PAMAM dendrimer nanoclusters. The results of the modeling were obtained by MMFF94 and RHF/PM6 methods for all form of the PAMAM–medicines complexes. The obtained results by these two methods were shown same trend of the relative energy surfaces of the complexes of PAMAM–medicines 1–4.  相似文献   

13.
The adsorption behavior and the phase transition of alkanol and fluoroalkanol at the electrified mercury/aqueous solution interface were investigated by the interfacial tension measurements and the thermodynamic analysis. In the alkanol system, it is found that the phase transitions in low interfacial densities occur: the ones from the zero adsorption to the gaseous or the expanded state and the gaseous to the expanded state at the electrified interface depending on the electrostatic nature as well as the concentration in the bulk phase. These phase transitions were verified by the thermodynamic equations derived by the assumption of coexistence of two phases at the electrified interface. Furthermore the distribution of ionic species in the interfacial region is discussed on the basis of dependence of the interfacial charge density of solution phase on an applied potential. Fluoroalkanol, on the other hand, was practically not adsorbed at the electrified interface within this experimental condition. The zero adsorption of fluoroalkanol molecules suggests the driving force of the adsorption may be the interaction hydrophobic group of alcohol molecule and mercury.  相似文献   

14.
The investigations aim at revealing the ability of a 1,8-napthalimide-modified poly(amidoamine) dendrimer from second generation to respond to the presence of cuprum cations and protons in the environment. It has been established that a single Cu(2+) cation present in the dendrimer molecule is capable of quenching more than 78% of its fluorescence what is an indication of high sensitiveness. An enhancement of the fluorescence emission of the dendrimer has been observed in acidic medium. It has been established that the processes of coordinating the ions in different sites of the dendrimer are reversible.  相似文献   

15.
The transfer of PAMAM dendrimers bearing carboxylic acid peripheral groups between two immiscible liquids was studied by means of the three phase junction system, using a gold wire vertically crossing the interface and decamethyl ferrocene as the redox probe in the organic phase. While the voltammetric behavior indicates kinetic limitations of the overall ion–electron transfer process, thermodynamic data shows that the phase transfer process is entropically controlled. Four dendrimer generations were analyzed and it was found that the kinetics as well as the thermodynamics of the phase transfer reaction are size dependent.  相似文献   

16.
A poly(amidoamine) (PAMAM) dendrimer composite membrane with an excellent CO2/N2 separation factor was developed in-situ. The In-situ Modification (IM) method was used to modify the surface of commercial porous membranes, such as ultrafiltration membranes, to produce a gas selective layer by controlling the interface precipitation of the membrane materials in the state of a received membrane module. Using the IM method, a chitosan layer was prepared on the inner surface of a commercially available ultrafiltration membrane as a gutter layer, in order to affix PAMAM dendrimer molecules on the porous substrate. After chitosan treatment, the PAMAM dendrimer was impregnated into the gutter layer to form a PAMAM/chitosan hybrid layer. The CO2 separation performance of the resulting composite membrane was tested at a pressure difference of 100 kPa and a temperature of 40 °C, using a mixed CO2 (5 vol%)/N2 (95 vol%) feed gas. The PAMAM dendrimer composite membrane, with a gutter layer prepared from ethylene glycol diglycidyl ether and a 0.5 wt% chitosan solution of two different molecular weight chitosans, revealed an excellent CO2/N2 separation factor and a CO2 permeance of 400 and 1.6 × 10−7 m3 (STP) m−2 s−1 kPa−1, respectively. SEM observations revealed a defect-free chitosan layer (thickness 200 nm) positioned directly beneath the top surface of the UF membrane substrate. After PAMAM dendrimer treatment, the hybrid chitosan/PAMAM dendrimer layer was observed with a thickness of 300 nm. XPS analysis indicated that the hybrid layer contained about 20–40% PAMAM dendrimer.  相似文献   

17.
The colouristic and fluorescent characteristics of a new composite material based on a PAMAM dendrimer of second generation whose periphery is modified with 4-N,N-dimethylaminoethylamino-1,8-naphthalimide and polyamide-6 have been investigated. This dendrimer has been investigated with regard to its application as a heterogenic sensor capable of detecting metal cations and protons in aqueous solutions. In the presence of metal cations (Ni2+, Fe2+, Fe3+ and Co2+) and protons the fluorescence intensity of the composite increases due to their coordination with dendrimer molecule. The results obtained reveal the capacity of this system to act as a sensitive sensor of environmental pollution by metal cations and protons. It has been shown that in N,N-dimethylformamide solution the metal cations inhibit the processes of photodegradation of the dendrimer.  相似文献   

18.
We have performed approximately 20-40 ns of molecular dynamics (MD) simulations for the generation 8 PAMAM dendrimer in explicit water under varying pH conditions to study the structure of the dendrimer (approximately 156,738 atoms at low pH). This is the first report of such a long MD simulation of a larger generation PAMAM dendrimer including the effect of salt and counterions with explicit water molecules. We find that changing the pH from a high value (approximately 12) to a low value (approximately 3) changes the radius of gyration from Rg = 37.8 to 43.1 A (increasing by 13%). We also find significant back-folding of the primary amines and a large amount of water penetration inside the polymer. The increase in size with decrease in pH is consistent with our earlier studies on G3-G6 and agrees with the Monte Carlo theory by Welch and Muthukumar of G8 (Macromolecules, 1998, 31, 5892) and the experiments on G5 and G8 PAMAM dendrimer by Topp et al. (Macromolecules, 1999, 32, 7232). However, these results disagree dramatically with the interpretations of SANS experiments of G8 PAMAM dendrimers by Nisato et al. (Macromolecules, 2000, 33, 4172) who observe no change in the size of the dendrimer with variations of solution pH and ionic strength. We assume that the disagreement might arise from neglecting nonspherical shape, penetration of water and ions into the core, and aggregation, all of which might depend on pH.  相似文献   

19.
The behaviour of flexible hydrosoluble polymers of high molecular weight: polyacrylamide and two polyacids, poly(α, L-glutamic acid) and a copolymer of maleic acid was investigated in the context of their dynamic behaviour at solid/liquid interfaces. The adsorption rate is related to the structure of the surface in terms of remaining interacting surface sites. The desorption rate was measured by carrying out adsorption with radioactive labelled polymers, followed by exchange with unlabelled polymers. The slow exchange rate observed suggests a metastable equilibrium state owing to strong multisegment adsorption in the potential well of the surface. However, the “diffuse” polymer layer formed by loops which extend in the aqueous phase within distances of several hundred Angstroms “responds” reversibly to a change in the solvent composition. The latter effect was found by recording the hydrodynamic permeability of pores covered by the adsorbed polymer; the permeability to fluid flow is very sensitive to the loop layer thickness.  相似文献   

20.
The mean time spent by a macromolecule at a solid/liquid interface is analyzed in the region of adsorption saturation. The method consists of carrying out preliminary adsorption with radioactively labeled high-molecular-weight polyacrylamide and subsequently exposing the surface to a solution of unlabeled polyacrylamide. It was found that, apart from a small fraction of polymers “loosely” attached, the exchange between labeled and unlabeled polymers takes place at the interface at a very slow rate. Furthermore, desorption of surface molecules occurs only in the presence of a solution, and then the rate of desorption increases proportionally to the number of molecules in the solution. A mechanism based on a bimolecular chemical exchange process is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号