首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Novel zinc phthalocyanine (ZnPc)/fullerene ligand (L) ensembles are assembled following simple biomimetic principles, which upon photoexcitation give rise to intra complex electron transfer quenching of the 1*ZnPc fluorescence.  相似文献   

2.
Novel thermodynamically stable supramolecular donor-acceptor dyads have been synthesized. In particular, we assembled successfully C(60), as an electron acceptor, with the strong electron donor TTF through a complementary guanidinium-carboxylate ion pair. Two strong and well-oriented hydrogen bonds, in combination with ionic interactions, ensure the formation of stable donor-acceptor dyads. The molecular architecture has been fine-tuned by using chemical spacers of different lengths (i.e., phenyl versus biphenyl) and functional groups (i.e., ester versus amide), thus providing meaningful incentives to differentiate between through-bond and through-space electron-transfer scenarios. In electrochemical studies, both the donor and acceptor character of the TTF and C(60) units, respectively, have been clearly identified. Steady-state and time-resolved emission studies, however, show a solvent-dependent fluorescence quenching in C(60)*TTF dyads as well as the formation of the C(60)(*)(-)*TTF(*)(+) radical ion pairs, for which we determined lifetimes that are in the range of hundred of nanoseconds to microseconds. The complex network that connects C(60) with TTF in the dyads and the flexible nature of the spacer result in through-space electron-transfer processes. This first example of electron transfer in C(60)-based dyads, connected by strong hydrogen bonds, demonstrates that this approach can add outstanding benefits to the construction of artificial photosynthetic systems that bear a closer resemblance to the natural one.  相似文献   

3.
A silicon phthalocyanine with two axial fullerene substituents was synthesized, and its electrochemical, absorption- and film-properties were characterized.  相似文献   

4.
5.
The present paper reports the photophysical aspects of a very interesting and unique host-guest interaction between fullerene and phthalocyanines, viz., free base phthalocyanine (H2-Pc) and zinc-phthalocyanine (Zn-Pc), in toluene medium. Ground state electronic interaction between these two supramolecules has been evidenced from the observation of well-defined charge transfer (CT) absorption bands in the visible region. Vertical ionization potentials of the phthalocyanines have been determined utilizing CT transition energy. Magnitude of degrees of CT reveals that, in the ground state, 2-4% CT takes place. Binding constants (K) for the fullerene/phthalocyanine complexes were determined from the fluorescence quenching experiment. Large K values in the ranges approximately 4.7 x 10(4) to 7.3 x 10(4) and 2.3 x 10(4) to 2.5 x 10(4) dm(3) x mol(-1) were obtained for the 1:1 fullerene complexes of Zn and H 2-Pc, respectively. Values of K suggest that both H 2- and Zn-Pc could not serve as an efficient discriminators between C60 and C70. Theoretical calculations as well as (13)C NMR studies establish that the orientation of C 70 toward phthalocyanine is favored in end-on orientation, which proves that interaction between fullerenes and phthalocyanines were governed by the electrostatic mechanism rather than dispersive forces associated with pi-pi interaction.  相似文献   

6.
Crystal needles of N,N′-bis(1-ethylpropyl)-3,4,9,10-perylenebis(dicarboximide) (EPPTC) are produced through p-stacking and are embedded in the thin film of poly(9,9-din-hexylfluorenyl-2,7-diyl) (PFO) when the blend solution of EPPTC and PFO in p-xylene is spin-coated onto a glass substrate. Charge transfer (CT) complex is resolved from the spectroscopic response of the blend film, which is generated only when the PFO molecules are excited. Thus, the PFO molecules are specified as donors and the H-aggregated EPPTC as acceptors in the formation of CT state (CTS). The emission resulting from the CTS in the red is further recognized by its much longer lifetime than both the intrinsic emission of the individual EPPTC molecules and that of their pure aggregates. Near-field analysis verifies that the CTS form on the boundary between the PFO and the crystal phases. The CT exciton forms by bounding the hole left on HOMO of the donor (PFO) and the indirectly transferred electron to the H-aggregate state of EPPTC, which transits back to the ground state by emitting a photon at about 650 nm. This introduces special physics in the heterojunctions that are coupled with the H-aggregates and mechanisms important for the design of organic photovoltaic devices. © 2013 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013  相似文献   

7.
The 248 and 193 nm photodissociations of submonolayer quantities of CH(3)Br and CH(3)I adsorbed on thin layers of n-hexane indicate that the dissociation is caused by dissociative electron attachment from subvacuum level photoelectrons created in the copper substrate. The characteristics of this photodissociation-translation energy distributions and coverage dependences show that the dissociation is mediated by an image potential state which temporarily traps the photoelectrons near the n-hexane-vacuum interface, and then the charge transfers from this image state to the affinity level of a coadsorbed halomethane which then dissociates.  相似文献   

8.
Synthesis and spectroscopic investigation of trifluoroethoxy-coated phthalocyanine-fullerene dyad 2 has been described. While nonfluorinated phthalocyanine-fullerene dyad 1 showed an efficient property of intramolecular photoinduced electron transfer, dyad 2, regardless of its covalently linked dyad system, appears not to show any electronic communication between fullerene and phthalocyanine. This observation is presumably due to the strong electron withdrawing nature of 12 trifluoroethoxy groups; fluorine leads phthalocyanine to become an acceptor whose electronic accepting property is equivalent to that of fullerene. This is a unique example that fluorine can terminate electronic communication in the covalently fullerene-phthalocyanine dyad system.  相似文献   

9.
We study the charge-transfer separability (CTS) property of the Fock space (FS) and equation-of-motion (EOM) coupled cluster (CC) methods by analysing the charge-transfer (CT) excitation energy versus the donor-acceptor (D-A) distance. All FS-CC approaches fulfill the CT separability condition which is not the case for the standard EOM-CC approaches. This defect of the EOM-CC scheme can be fixed by slight modification of the H matrix's diagrammatic structure, namely by adding some "dressing" composed of disconnected terms. The latter guarantee CTS of the respective EOM-CC scheme and marginally improve local excitations. The newly proposed variant of the EOM-CCSD approach is termed EOM-CCSDx (size-extensive EOM-CCSD).  相似文献   

10.
Copper and zinc phthalocyanines and porphyrins are used in organic light emitting diodes and dye-sensitized solar cells. Using near edge x-ray absorption fine structure (NEXAFS) spectroscopy at the Cu 2p and Zn 2p edges, the unoccupied valence states at the Cu and Zn atoms are probed and decomposed into 3d and 4s contributions with the help of density functional calculations. A comparison with the N 1s edge provides the 2p states of the N atoms surrounding the metal, and a comparison with inverse photoemission provides a combined density of states.  相似文献   

11.
The kinetics of charge recombination in radical ion pairs C70 /Am+ (Am isN, N, NN-tetramethyl-p-phenylenediamine,p-methoxy-N,N-dimethylaniline,p-methyl-N,N-di-methylaniline,N,N-diethylaniline,N,N-dimethylaniline, and triphenylamine) in chlorobenzene was studied by the picosecond laser photolysis technique. The radical ion states are the products of excitation of charge-transfer complexes between C70 and amines and are also formed by quenching of the singlet excited state of C70 by the amine. The rate constant of electron transfer in the radical ion pair decreases as the free Gibbs energy (G) of the reaction increases and reflects the Marcus-inverted region of the dependence of the rate constant on G. The C70/Am and C60/Am systems are compared.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 1151–1158, May, 1996.  相似文献   

12.
We present a theoretical study of the eigenstates of the endohedral fullerene Li@C60 for the case that the C 60 cage is assumed to be stationary. These eigenstates represent the three-dimensional nuclear dynamics of a Li atom confined to the interior of the carbon cage. The potential function employed, based on density functional theory calculations that we performed, has a variety of minima corresponding to complex hindered rotations of the Li atom in a shell about 1.5 A from the cage center. The energies and wave functions of the lowest 1200 states have been calculated, and the characteristic features of selected states and the far-IR spectrum are discussed. An interesting result of the calculations is the finding that the ground-state eigenfunction can become strongly localized when the cage atoms are just slightly perturbed from icosahedral symmetry.  相似文献   

13.
A conjugated donor-acceptor array composed of two phthalocyanines connected to the bay region of a perylenediimide is assembled by using palladium chemistry. Excitation of the phthalocyanine produces a nanosecond lived charge-separated state.  相似文献   

14.
A novel ZnPc-C60 dyad (3), in which two photoactive units are brought together by a phenylenevinylene spacer has been synthesized. The synthetic strategy en route toward 3 involves a Heck reaction to attach 4-vinylbenzaldehyde to a monoiodophthalocyanine precursor, followed by standard cycloaddition of azomethine ylides (generated from the formylPc derivative and N-methylglycine) to one of the double bonds of C60. Electrochemical studies reveal that in 3 the ZnPc is about 39 mV more difficult to oxidize than in the corresponding ZnPc reference, which points to appreciable electronic communication between ZnPc and C60 in the ground state. In the excited state, photoexcitation leads to the formation of a charge-separated ZnPc*+-C60*- state, for which a lifetime of 130 ns was determined in THF. Hetero-association between complementary Pcs (1 and 2 or 3 and 2), which carry different peripheral functionalities (i.e., either electron-donating alkoxy groups or electron-deficient alkylsulfonyl chains) was assessed by different techniques. They provided evidence for donor-acceptor 1:1 complex formation with a stability constant of ca. 10(5) M(-1) in CHCl3. Interestingly, hetero-association of ZnPc-C60 dyad 3 with an electron-deficient PdPc (2) allowed the construction of supramolecular triads, in which a substantial stabilization of the radical pair is seen relative to that of the covalently linked dyad ZnPc-C60 (3).  相似文献   

15.
The complexes of Cu2+ hexafluoroacetylacetonate with two pyrazol-substituted nitronyl nitroxides are the choice systems to study the spin dynamics of strongly exchange-coupled spin triads. The large values of exchange coupling (ca. 100 cm-1) and high-resolution electron paramagnetic resonance (EPR) at Q- and W-bands (35 and 94 GHz) allowed us to observe and interpret specific characteristics of these systems. An electron spin exchange process has been found between different multiplets of the spin triad, which manifests itself as a significant shift of the EPR line position with temperature. We propose that the spin exchange process is caused by the modulation of exchange interaction between copper and nitroxides by lattice vibrations. The estimations of the rate of exchange process and model calculations essentially support the observed phenomena. The studied characteristics of strongly coupled spin triads explain previously obtained results, agree with literature, and should be accounted for in future investigations of similar spin systems.  相似文献   

16.
Thermoreversible gelation of polymers driven by the coil-to-helix transition in chain conformation is theoretically studied. For pairwise association of single helices, there are three fundamental types of self-assemblies as a result of competition between helix growth and helix association: Type I network (random coils connected by paired short helices), Type II network (helices connected by short random coils) and pairing (pairs of long helices without branching). Two distinct phase diagrams showing sol/gel transition and coil/helix transition are derived for weak and strong association.  相似文献   

17.
Synthesis and photophysical/photochemical investigations of 1,8a-dihydro-2,3-bis(2,5-dimethy-3-thienyl)-azulene-1,1-dicarbonitrile (1A) and 1,8a-dihydro-2,3-diphenylazulene-1,1-dicarbonitrile (2A) are reported. The photoprocesses and thermal reactions of systems 1 and 2 were studied by time-resolved and steady-state techniques under various conditions. The dihydroazulene (DHA)-dithienylethene (DTE) conjugate 1A is photochemically converted into the dihydrothienobenzothiophene (DHB) isomer 1C and the vinylheptafulvene (VHF) isomer 1B. System 2 exhibits exclusively DHA/VHF photochromism. For both systems the VHF form thermally reverts back into the DHA form. Their rate constant (kB-->A) increases with the solvent polarity and the relaxation kinetics proceed by means of an activation barrier of 65-80 kJ mol(-1); kB-->A and the activation parameters of the isomerisation reactions are rather similar. The photostationary state of the 1A-->1B and 1A-->1C photoisomerisation is sensitive to the irradiation wavelength. The concept of cycloswitching is discussed.  相似文献   

18.
There is an increasing dataset of solved biomolecular structures in more than one conformation and increasing evidence that large-scale conformational change is critical for biomolecular function. In this article, we present our implementation of a dynamic importance sampling (DIMS) algorithm that is directed toward improving our understanding of important intermediate states between experimentally defined starting and ending points. This complements traditional molecular dynamics methods where most of the sampling time is spent in the stable free energy wells defined by these initial and final points. As such, the algorithm creates a candidate set of transitions that provide insights for the much slower and probably most important, functionally relevant degrees of freedom. The method is implemented in the program CHARMM and is tested on six systems of growing size and complexity. These systems, the folding of Protein A and of Protein G, the conformational changes in the calcium sensor S100A6, the glucose-galactose-binding protein, maltodextrin, and lactoferrin, are also compared against other approaches that have been suggested in the literature. The results suggest good sampling on a diverse set of intermediates for all six systems with an ability to control the bias and thus to sample distributions of trajectories for the analysis of intermediate states.  相似文献   

19.
Multiple conformations separated by high‐energy barriers represent a challenging problem in free‐energy calculations due to the difficulties in achieving adequate sampling. We present an application of thermodynamic integration (TI) in conjunction with the local elevation umbrella sampling (LE/US) method to improve convergence in alchemical free‐energy calculations. TI‐LE/US was applied to the guanosine triphosphate (GTP) to 8‐Br‐GTP perturbation, molecules that present high‐energy barriers between the anti and syn states and that have inverted preferences for those states. The convergence and reliability of TI‐LE/US was assessed by comparing with previous results using the enhanced‐sampling one‐step perturbation (OSP) method. A linear interpolation of the end‐state biasing potentials was sufficient to dramatically improve sampling along the chosen reaction coordinate. Conformational free‐energy differences were also computed for the syn and anti states and compared to experimental and theoretical results. Additionally, a coupled OSP with LE/US was carried out, allowing the calculation of conformational and alchemical free energies of GTP and 8‐substituted GTP analogs. © 2013 Wiley Periodicals, Inc.  相似文献   

20.
Photoluminescence (PL) measurements have been performed on the nanocomposites of higher fullerene-coupled porous silicon (PS) nanocrystals. For the C70PS and C76(78)PS nanocomposites, the PL spectra show a pinning wavelength at approximately 565 nm and for the C84PS and C94PS nanosystems the pinning wavelength is at approximately 590 nm. The PL pinning property is closely related to the sorts of the coupled fullerenes. A band mixing model of direct and indirect gaps in a nanometer environment consisting of nc-Si core, SiO2 surface layer, and coupled fullerene has been proposed for calculation of electronic states. Good agreement is achieved between the experiments and theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号