首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A study of recombination kinetics in LiB3O5 (LBO) crystals by time-resolved luminescence and absorption spectroscopy is reported. An investigation of the kinetics of transient optical absorption (TOA) and luminescence under ns-scale electron-beam excitation performed within a broad temperature range of 77–500 K and a 1.2–5-eV spectral interval has established that the specific features in the recombination kinetics observed in LBO involve electronic, B2+, and hole, O, trapping centers. The TOA and luminescence kinetics, as well as their temperature dependence, are interpreted by a model of competing hole centers. Relations connecting the kinetics parameters and the temperature dependence to the parameters of the main LBO point defects are presented. Fiz. Tverd. Tela (St. Petersburg) 40, 2008–2014 (November 1998)  相似文献   

2.
Optical properties, including luminescence, of scandium-doped α-Al2O3 crystals have been studied in the VUV range. An absorption band associated with the scandium impurity was observed at the fundamental-absorption edge of crystalline corundum. A strong luminescence band peaking at 5.6 eV, which is most effectively excited within the 7.7–8.8-eV interval, was found. The kinetic and polarization characteristics of this luminescence were studied within the temperature range 6–500 K. An excitation model of the impurity complex and the mechanism of its relaxation are discussed. Fiz. Tverd. Tela (St. Petersburg) 40, 653–654 (April 1998)  相似文献   

3.
Measurements have been made of the Raman, optical absorption, and luminescence spectra of single crystals and pellets of the fullerite C70 at T=300 K and at pressures up to 12 GPa. The baric shift /dP and the Grüneisen parameters of the Raman-active intramolecular phonon modes have been determined. It has been established that the d ω/dP value for certain phonon modes abruptly changes at pressures of P 1≈2 GPa and P 2≈5.5 GPa, as do the half-widths of the Raman lines. These features in the Raman spectrum are associated with phase transitions at high pressure. The baric shifts of the absorption and luminescence edges of C70 crystals have been determined and are −0.12 eV/GPa and −0.11 eV/GPa, respectively, for absorption and luminescence. The baric shift of the absorption edge decreases significantly with increasing pressure and is −0.03 eV/GPa at 10 GPa. These data have been used to determine the deformation potential of the fullerite C70, which is about 2.1±0.1 eV. Zh. éksp. Teor. Fiz. 111, 262–273 (January 1997)  相似文献   

4.
The dynamics of electron excitations and luminescence of LiB3O5 (LBO) single crystals was studied using low-temperature luminescence vacuum ultraviolet spectroscopy with a subnanosecond time resolution under photoexcitation with synchrotron radiation. The kinetics of the photoluminescence (PL) decay, the time-resolved PL emission spectra, and the time-resolved PL excitation spectra of LBO were measured at 7 and 290 K, respectively. The PL emission bands peaking at 2.7 eV and 3.3 eV were attributed to the radiative transitions of electronic excitations connected with lattice defects of LBO. The intrinsic PL emission bands at 3.6 and 4.2 eV were associated with the radiative annihilation of two kinds of self-trapped electron excitations in LBO. The processes responsible for the formation of localized electron excitations in LBO were discussed and compared with those taking place in wide-gap oxides.  相似文献   

5.
The spectral distribution of the uv-induced photoconductivity intensity and relaxation in Bi12SiO20 and Bi12GeO20 crystals both undoped and doped with Al, Ga, Cr, Cu, Mn, and V is investigated in the optical range 0.5–3.5 eV in the temperature ranges 85–95 K and 285–295 K. It is shown that in the short-wavelength region 2.2–3.5 eV it is controlled by multicenter recombination in which both “fast” and “slow” recombination participate. Fiz. Tverd. Tela (St. Petersburg) 40, 1027–1029 (June 1998)  相似文献   

6.
The processes of crystallization by the method of liquid epitaxy are studied for the first time for single-crystal films of CdWO4 doped with the mercurylike ions Bi3+ and Pb2+, which can be used as thin-film components of combined scintillators for monitoring α- and β-activities. It is shown that in comparison with their solidcrystal analogs, the special features of these films consist in a longwave shift of the integral luminescence spectrum that is caused by high concentrations of the radiating complexes (VCd-WO6) with hvmax=2.05–2.15 eV and the “distorted” complexes (WO6)* in them. It is found that in the case of luminescence of single-crystal films CdWO4:Pb, radiation of mercurylike centers (PbO6) prevails with hvmax=2.87 eV, while in luminescence of CdWO4, radiation of centers (BiO6) with hvmax=2.16 eV and of complexes (VCd-WO6). Institute of Applied Physics, Iv. Franko Lvov State University, 49, General Chuprynka St., Lvov, 290044, Ukraine. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 65, No. 2, pp. 211–215, March–April, 1998.  相似文献   

7.
Spatially separated defects created by photons with energies 6–8 eV in alkali-earth fluoride crystals doped with cerium are investigated with the help of thermoluminescence. Measuring the spectra of creation of Vk and H peaks of thermostimulated luminescence inBaF 2:Ce3+. we demonstrate that photons with energies higher than 6eV induce H centers (self-trapped holes captured by interstitialF ions), whereas the formation of self-trapped holes begins on exposure to photons with energies greater than 7 eV. The influence of photoionization on theCe 3+ luminescence inBaF 2, SrF2, CaF2, andCeF 3 crystals is investigated in the range of photon energies 4–8 eV. An exponentialCe 3+-emisson decay was observed for excitation energy lying in the range 4–6 eV. Slow and fast decay components were observed under excitation by photons with energies higher than 6 eV. We believe that the slow and fast components are due to the tunnel recombination of trapped electrons with hole centers. A. P. Vinogradov Institute of Geochemistry of the Siberian Branch of the Russian Academy of Sciences. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 3, pp. 43–49, March, 2000.  相似文献   

8.
The results of comparative luminescence investigation of natural and synthetic BeO crystals are presented. Time-resolved luminescence (2.5–8 eV) and luminescence excitation spectra, and the kinetics of glow decay were measured using ultraviolet-vacuum-ultraviolet (VUV) synchrotron radiation (5–22 eV) or x-radiation (50–620 eV or 3–62 keV) ranges. X-ray and thermostimulated luminescence of natural BeO crystals were compared to the glow of additively colored synthetic crystals. The characteristic luminescence of F and F + centers was found in natural crystals. In synthetic crystals similar luminescence is observed only after additive or radiation coloration by virtue of the creation of F and F + centers on anion vacancies. The defects found in the crystal lattice of a natural BeO crystal testify to the degree of mineral metamictization of the given deposit.  相似文献   

9.
Data presented on the influence of the temperature in the range 80–650 K on the spectral kinetics of the luminescence and transient absorption of unactivated CsI crystals under irradiation by pulsed electron beams (〈E〉=0.25 MeV, t 1/2=15 ns, j=20 A/cm2). The structure of the short-wavelength part of the transient absorption spectra at T=80–350 K exhibits features, suggesting that the nuclear subsystem of self-trapped excitons (STE’s) transforms repeatedly during their lifetime until their radiative annihilation at T⩾80 K, alternately occupying di-and trihalide ionic configurations. It is established that a temperature-induced increase in the yield of radiation defects, as well as F and H color centers, and quenching of the UV luminescence in CsI occur in the same temperature region (above 350 K) and are characterized by identical thermal activation energies (∼0.22 eV). It is postulated that the STE’s in a CsI crystal can have a trihalide ionic core with either an on-center or off-center configuration; the high-temperature luminescence of CsI crystals is associated with the radiative annihilation of an off-center STE with the structure (I(I0I e ))*. Fiz. Tverd. Tela (St. Petersburg) 40, 640–644 (April 1998)  相似文献   

10.
Sc2O3 luminescence spectra are studied. The spectra are separated into elementary bands by the Alentsev–Fock method. It is established that the luminescence spectra consist of a number of overlapping bands with maxima at 3.5; 3.05; 2.65; 2.35, and 2.05 eV. The band at 3.5 eV is interpreted as emission of self-localized excitons, and the other bands, as defect-center recombination. L’vov State University, 50, Dragomanov St., L’vov, 290005, Ukraine. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 64, No. 6, pp. 776–778, November–December, 1997.  相似文献   

11.
The luminescence spectra are obtained in the visible region for the high-T c superconductors La2CuO4, YBA2Cu3O7−δ , Bi2Sr2CaCu2Oδ , and YBa2Cu3Oδ and for the secondary phases BaCuO2±γ and Y2Cu2O5. The presence of a luminescence band with energy E lum∼2.4 eV in the spectra of all the investigated compounds is established. The nature of the observed luminescence bands is discussed on the basis of a comparative analysis of the crystal structures and luminescence spectra and on the basis of notions as to the presence of bands in the spectra accompanied by photoinduced diffusion of weakly bound oxygen and photoinduced charge transfer in the CuO2 planes. Fiz. Tverd. Tela (St. Petersburg) 39, 1739–1746 (October 1997)  相似文献   

12.
The anisotropy of the optical properties of a single crystal of the hexagonal manganite HoMnO3 has been investigated by spectroscopic ellipsometry in the spectral range 0.6–5.0 eV. It has been demonstrated that the optical absorption edge for the polarization Ec is determined by the intense narrow transition O(2p) → Mn(3d) centered at 1.5 eV, whereas this transition for the polarization Ec is strongly suppressed and shifted toward higher energies by 0.2 eV. It has been revealed that, at the temperature T = 293 K, the spectra for both polarizations Ec and Ec exhibit a broad absorption band centered at ∼2.4 eV, which was earlier observed in nonlinear spectra during optical second harmonic generation.  相似文献   

13.
Luminescence photoexcitation spectra of α-Bi2O3 ceramics are investigated. Luminescence spectra were deconvoluted into fundamental components using the Alentsev-Fok method. It is established that the luminescence spectra of α-Bi2O3 ceramics consist of three fundamental bands with maxima at 2.75, 2.40, and 1.97 eV. A comparison of the results with those from an investigation of luminescence of various modifications of bismuth oxide and bismuth germanates suggests that luminescence of these compounds is caused by radiation processes that occur in structural complexes that contain the bismuth ion in a nearest oxygen environment. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 75, No. 5, pp. 672–676, September–October, 2008.  相似文献   

14.
We have studied the photoexcitation and luminescence spectra of Bi2WO6, Y2WO6 and Y2WO6:Bi ceramics. We used the Alentsev-Fock method to decompose the spectra into elementary components. The emission bands with maximum at 2.93 eV in the luminescence spectrum of Bi2WO6, 3.02 eV in the luminescence spectrum of Y2WO6, and 2.95 eV in the luminescence spectrum of Y2WO6:Bi are assigned to luminescence of self-localized Frenkel excitons. The bands with maxima at 2.35 eV and 1.90 eV in the spectrum of Bi2WO6, 2.25 eV and 1.75 eV in the spectrum of Y2WO6, and 2.35 eV and 1.85 eV in the spectrum of Y2WO6:Bi are connected with oxygen vacancies. __________ Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 74, No. 5, pp. 688–691, September–October, 2007.  相似文献   

15.
The luminescence and luminescence excitation spectra of thin films of Bi4Ge3O12 and Bi2Ge3O9 were investigated. The spectra were decomposed into elementary components by the Alentsev-Fok method. It has been established that the luminescence spectra of thin Bi4Ge3O12 and Bi2Ge3O9 films have a similar structure and that each contains three luminescence bands with maxima at 2.70, 2.40, and 2.05 eV and at 2.73, 2.40, and 1.95 eV, respectively. Comparison of the results obtained with the well-known results of investigation of the luminescence of Bi12GeO20 and Bi2O3 suggests that the luminescence in the compounds considered is caused by the radiation processes that proceed in structural complexes of similar configuration that contain the bismuth ion in the nearest oxygen environment. __________ Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 72, No. 3, pp. 377–380, May–June, 2005.  相似文献   

16.
This paper reports on the first investigation made of luminescence of Ge/Ge1−x Six heterostructures at liquid-helium temperatures in a magnetic field of up to 14 T. The luminescence lines observed in the spectra are due to both free and impurity bound excitons in Ge layers. The diamagnetic shift of the quasi-two-dimensional exciton has been measured. From the experimental data the size of the exciton has been estimated to be 75–90 Å. Zh. éksp. Teor. Fiz. 114, 619–627 (August 1998)  相似文献   

17.
An investigation is made of the luminescence spectra of Me2WO6 ceramics (Me=Y, Sc, Bi). The spectra were decomposed into elementary components by the Alentsev—Fock method. Radiation hands with a maximum at 3.02 eV in the Y2WO6 luminescence spectrum, at 2.8 eV in the ScWO6 spectrum, and at 2.93 eV in the Bi2WO6 spectrum are assigned to the light emission of self-localized Frenkel excitons. The bands with maxima at 2.25 and 1.75 eV in the Y2WO6 spectrum, at 2.36 and 1.9 eV in the Sc2WO6 spectrum, and at 2.35 and 1.9 eV in the Bi2WO6 spectrum are related to oxygen vacancies. Translated from Zhurnal Prikladnoi Spektroskopii, Vol 67, No. 2, pp. 273–275, March–April, 2000.  相似文献   

18.
Luminescence spectra for isostructural Y2SiO5 and Y2GeO5 are investigated. The spectra are resolved into elementary components by the Alentsev—Fock method. Bands with maxima in regions of 2.6, 2.3, and 2.05 eV in the spectra of Y2SiO5 luminescence and in regions of 2.55, 2.25, and 2.0 eV in the spectra of Y2GeO5 luminescence are considered as radiative recombination of excited associative donor-acceptor Y3+−O2− pairs. The indicated bands are related to certain distances between yttrium (the donor) and oxygen (the acceptor). A band with a maximum of 2.95 eV in Y2SiO5 and 3.0 eV in Y2GeO5 occurs in recombination of electrons with holes trapped by an anionic sublattice. I. Franko L’vov State University, 50, Dragomanov St., L’vov, 290005, Ukraine. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 65, No. 4, pp. 528–531, July–August, 1998.  相似文献   

19.
The influence of doping of Bi12SiO20 (BSO) with chromium and manganese ions on the thermal depolarization currents (TDCs) is investigated. Measurements are performed in the temperature interval 300–800 K as the preliminary polarization temperature is varied in the range T p=300–523 K. It is shown that doping significantly alters the structure of the TDC spectra. The Cr and Mn ions produce a set of new peaks over the entire investigated temperature range. The thermal activation energies are 0.85–1.98 eV (BSO:Cr) and 0.58–1.72 eV (BSO:Mn). Another consequence of doping is an increase in the amplitudes of the peaks and the charge accumulated during preliminary polarization. Fiz. Tverd. Tela (St. Petersburg) 40, 472–474 (March 1998)  相似文献   

20.
The cathodoluminescence (CL) in ZnSe crystals annealed at T=1200 K in a Bi melt containing an aluminum impurity is investigated. The spectra are recorded for different excitation levels, temperatures, and detection delay times t 0. As t 0 is increased, the intensity of the orange band at λ max=630 nm (1.968 eV) in the CL spectrum decreases in comparison to the intensity of the dominant yellow-green band at λ max=550 nm (2.254 eV), whose half-width increases in the temperature range 6–120 K and then decreases as the temperature increases further. It is shown that such behavior of the yellow-green band is caused by the competition between two processes: recombination of donor-acceptor pairs and of free electrons with holes trapped on acceptors. The former mechanism is dominant at low temperatures, and the latter mechanism is dominant at high temperatures. At T∼120 mK the contributions of the two mechanisms to the luminescence are comparable. The resultant structureless band then achieves its greatest half-width, which is dictated by the interaction of the recombining charge carriers with longitudinal-optical and longitudinal-acoustic phonons and with the free-electron plasma. The mean number of longitudinal-optical phonons emitted per photon is determined mainly by their interaction with holes trapped on deep acceptors in the form of Al atoms replacing Se. The donor in the pair under consideration is an interstitial Al atom. Fiz. Tverd. Tela (St. Petersburg) 39, 1526–1531 (September 1997)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号