首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper we list several useful properties of central points in linear programming problems. We study the logarithmic barrier function, the analytic center and the central path, relating the proximity measures and scaled Euclidean distances defined for the primal and primal–dual problems. We study the Newton centering steps, and show how large the short steps used in path following algorithms can actually be, and what variation can be ensured for the barrier function in each iteration of such methods. We relate the primal and primal–dual Newton centering steps and propose a primal-only path following algorithm for linear programming.  相似文献   

2.
《Optimization》2012,61(5):683-690
Our paper presents a new Criss-Cross method for solving linear programming problems. Starting from a neither primal nor dual feasible solution, we reach an optimal solution in finite number of steps if it exists. If there is no optimal solution, then we show that there is not primal feasible or dual feasible solution, We prove the finiteness of this procedure. Our procedure is not the same as the primal or dual simplex method if we have a primal or dual feasible solution, so we have constructed a quite new procedure for solving linear programming problems.  相似文献   

3.
We apply a modified subgradient algorithm (MSG) for solving the dual of a nonlinear and nonconvex optimization problem. The dual scheme we consider uses the sharp augmented Lagrangian. A desirable feature of this method is primal convergence, which means that every accumulation point of a primal sequence (which is automatically generated during the process), is a primal solution. This feature is not true in general for available variants of MSG. We propose here two new variants of MSG which enjoy both primal and dual convergence, as long as the dual optimal set is nonempty. These variants have a very simple choice for the stepsizes. Moreover, we also establish primal convergence when the dual optimal set is empty. Finally, our second variant of MSG converges in a finite number of steps.  相似文献   

4.
Many theoretical and algorithmic results in semidefinite programming are based on the assumption that Slater's constraint qualification is satisfied for the primal and the associated dual problem. We consider semidefinite problems with zero duality gap for which Slater's condition fails for at least one of the primal and dual problem. We propose a numerically reasonable way of dealing with such semidefinite programs. The new method is based on a standard search direction with damped Newton steps towards primal and dual feasibility.  相似文献   

5.
After a brief introduction to Jordan algebras, we present a primal–dual interior-point algorithm for second-order conic optimization that uses full Nesterov–Todd steps; no line searches are required. The number of iterations of the algorithm coincides with the currently best iteration bound for second-order conic optimization. We also generalize an infeasible interior-point method for linear optimization to second-order conic optimization. As usual for infeasible interior-point methods, the starting point depends on a positive number. The algorithm either finds a solution in a finite number of iterations or determines that the primal–dual problem pair has no optimal solution with vanishing duality gap.  相似文献   

6.
Consider the utilization of a Lagrangian dual method which is convergent for consistent convex optimization problems. When it is used to solve an infeasible optimization problem, its inconsistency will then manifest itself through the divergence of the sequence of dual iterates. Will then the sequence of primal subproblem solutions still yield relevant information regarding the primal program? We answer this question in the affirmative for a convex program and an associated subgradient algorithm for its Lagrange dual. We show that the primal–dual pair of programs corresponding to an associated homogeneous dual function is in turn associated with a saddle-point problem, in which—in the inconsistent case—the primal part amounts to finding a solution in the primal space such that the Euclidean norm of the infeasibility in the relaxed constraints is minimized; the dual part amounts to identifying a feasible steepest ascent direction for the Lagrangian dual function. We present convergence results for a conditional \(\varepsilon \)-subgradient optimization algorithm applied to the Lagrangian dual problem, and the construction of an ergodic sequence of primal subproblem solutions; this composite algorithm yields convergence of the primal–dual sequence to the set of saddle-points of the associated homogeneous Lagrangian function; for linear programs, convergence to the subset in which the primal objective is at minimum is also achieved.  相似文献   

7.
Recently, Luc defined a dual program for a multiple objective linear program. The dual problem is also a multiple objective linear problem and the weak duality and strong duality theorems for these primal and dual problems have been established. Here, we use these results to prove some relationships between multiple objective linear primal and dual problems. We extend the available results on single objective linear primal and dual problems to multiple objective linear primal and dual problems. Complementary slackness conditions for efficient solutions, and conditions for the existence of weakly efficient solution sets and existence of strictly primal and dual feasible points are established. We show that primal-dual (weakly) efficient solutions satisfying strictly complementary conditions exist. Furthermore, we consider Isermann’s and Kolumban’s dual problems and establish conditions for the existence of strictly primal and dual feasible points. We show the existence of primal-dual feasible points satisfying strictly complementary conditions for Isermann’s dual problem. Also, we give an alternative proof to establish necessary conditions for weakly efficient solutions of multiple objective programs, assuming the Kuhn–Tucker (KT) constraint qualification. We also provide a new condition to ensure the KT constraint qualification.  相似文献   

8.
In this paper, we investigate the behavior of the primal affine scaling method with unit steps when applied to the case where b=0 and c>0. We prove that the method is globally convergent and that the dual iterates converge to the analytic center of the dual feasible region.  相似文献   

9.
We propose a new modified primal–dual proximal best approximation method for solving convex not necessarily differentiable optimization problems. The novelty of the method relies on introducing memory by taking into account iterates computed in previous steps in the formulas defining current iterate. To this end we consider projections onto intersections of halfspaces generated on the basis of the current as well as the previous iterates. To calculate these projections we are using recently obtained closed-form expressions for projectors onto polyhedral sets. The resulting algorithm with memory inherits strong convergence properties of the original best approximation proximal primal–dual algorithm. Additionally, we compare our algorithm with the original (non-inertial) one with the help of the so called attraction property defined below. Extensive numerical experimental results on image reconstruction problems illustrate the advantages of including memory into the original algorithm.  相似文献   

10.
This paper proposes two sets of rules, Rule G and Rule P, for controlling step lengths in a generic primal—dual interior point method for solving the linear programming problem in standard form and its dual. Theoretically, Rule G ensures the global convergence, while Rule P, which is a special case of Rule G, ensures the O(nL) iteration polynomial-time computational complexity. Both rules depend only on the lengths of the steps from the current iterates in the primal and dual spaces to the respective boundaries of the primal and dual feasible regions. They rely neither on neighborhoods of the central trajectory nor on potential function. These rules allow large steps without performing any line search. Rule G is especially flexible enough for implementation in practically efficient primal—dual interior point algorithms.Part of the research was done when M. Kojima and S. Mizuno visited at the IBM Almaden Research Center. Partial support from the Office of Naval Research under Contracts N00014-87-C-0820 and N00014-91-C-0026 is acknowledged.  相似文献   

11.
We introduce new augmented Lagrangian algorithms for linear programming which provide faster global convergence rates than the augmented algorithm of Polyak and Treti'akov. Our algorithm shares the same properties as the Polyak-Treti'akov algorithm in that it terminates in finitely many iterations and obtains both primal and dual optimal solutions. We present an implementable version of the algorithm which requires only approximate minimization at each iteration. We provide a global convergence rate for this version of the algorithm and show that the primal and dual points generated by the algorithm converge to the primal and dual optimal set, respectively.  相似文献   

12.
This paper is concerned with a primal–dual interior point method for solving nonlinear semidefinite programming problems. The method consists of the outer iteration (SDPIP) that finds a KKT point and the inner iteration (SDPLS) that calculates an approximate barrier KKT point. Algorithm SDPLS uses a commutative class of Newton-like directions for the generation of line search directions. By combining the primal barrier penalty function and the primal–dual barrier function, a new primal–dual merit function is proposed. We prove the global convergence property of our method. Finally some numerical experiments are given.  相似文献   

13.
We consider a primal optimization problem in a reflexive Banach space and a duality scheme via generalized augmented Lagrangians. For solving the dual problem (in a Hilbert space), we introduce and analyze a new parameterized Inexact Modified Subgradient (IMSg) algorithm. The IMSg generates a primal-dual sequence, and we focus on two simple new choices of the stepsize. We prove that every weak accumulation point of the primal sequence is a primal solution and the dual sequence converges weakly to a dual solution, as long as the dual optimal set is nonempty. Moreover, we establish primal convergence even when the dual optimal set is empty. Our second choice of the stepsize gives rise to a variant of IMSg which has finite termination.  相似文献   

14.
In this paper we develop a primal-dual subgradient algorithm for preferably decomposable, generally nondifferentiable, convex programming problems, under usual regularity conditions. The algorithm employs a Lagrangian dual function along with a suitable penalty function which satisfies a specified set of properties, in order to generate a sequence of primal and dual iterates for which some subsequence converges to a pair of primal-dual optimal solutions. Several classical types of penalty functions are shown to satisfy these specified properties. A geometric convergence rate is established for the algorithm under some additional assumptions. This approach has three principal advantages. Firstly, both primal and dual solutions are available which prove to be useful in several contexts. Secondly, the choice of step sizes, which plays an important role in subgradient optimization, is guided more determinably in this method via primal and dual information. Thirdly, typical subgradient algorithms suffer from the lack of an appropriate stopping criterion, and so the quality of the solution obtained after a finite number of steps is usually unknown. In contrast, by using the primal-dual gap, the proposed algorithm possesses a natural stopping criterion.  相似文献   

15.
Efficient algorithms for buffer space allocation   总被引:1,自引:0,他引:1  
This paper describes efficient algorithms for determining how buffer space should be allocated in a flow line. We analyze two problems: a primal problem, which minimizes total buffer space subject to a production rate constraint; and a dual problem, which maximizes production rate subject to a total buffer space constraint. The dual problem is solved by means of a gradient method, and the primal problem is solved using the dual solution. Numerical results are presented. Profit optimization problems are natural generalizations of the primal and dual problems, and we show how they can be solved using essentially the same algorithms.  相似文献   

16.
In earlier works (Tits et al. SIAM J. Optim., 17(1):119–146, 2006; Winternitz et al. Comput. Optim. Appl., 51(3):1001–1036, 2012), the present authors and their collaborators proposed primal–dual interior-point (PDIP) algorithms for linear optimization that, at each iteration, use only a subset of the (dual) inequality constraints in constructing the search direction. For problems with many more variables than constraints in primal form, this can yield a major speedup in the computation of search directions. However, in order for the Newton-like PDIP steps to be well defined, it is necessary that the gradients of the constraints included in the working set span the full dual space. In practice, in particular in the case of highly sparse problems, this often results in an undesirably large working set—or in an expensive trial-and-error process for its selection. In this paper, we present two approaches that remove this non-degeneracy requirement, while retaining the convergence results obtained in the earlier work.  相似文献   

17.
We propose a new class of incremental primal–dual techniques for solving nonlinear programming problems with special structure. Specifically, the objective functions of the problems are sums of independent nonconvex continuously differentiable terms minimized subject to a set of nonlinear constraints for each term. The technique performs successive primal–dual increments for each decomposition term of the objective function. The primal–dual increments are calculated by performing one Newton step towards the solution of the Karush–Kuhn–Tucker optimality conditions of each subproblem associated with each objective function term. We show that the resulting incremental algorithm is q-linearly convergent under mild assumptions for the original problem.  相似文献   

18.
This contribution is concerned with goal–oriented r-adaptivity based on energy minimization principles for the primal and the dual problem. We obtain a material residual of the primal and of the dual problem, which are indicators for non–optimal finite element meshes. For goal–oriented r-adaptivity we have to optimize the mesh with respect to the dual solution, because the error of a local quantity of interest depends on the error in the corresponding dual solution. We use the material residual of the primal and dual problem in order to obtain a procedure for mesh optimization with respect to a local quantity of interest. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
We present a method for constructing linear programming problems with randomly generated data. Besides the number of variables and constraints, the dimensions of the primal and dual faces are given. We show that, for problems in which the constraint matrix is carelessly constructed with random entries, with probability one only one between primal degeneracy and dual degeneracy appears.  相似文献   

20.
In this paper we propose a large class of fuzzy dynamic programs. By use of the notion of dual binary relation we define a dual fuzzy dynamic program in the class. We establish two duality theorems between primal and dual fuzzy dynamic programs. One is for the two-parametric recursive equations. The other is for the nonparametric. We specify maximum–minimum process and minimum–minimum process in fuzzy environment and multiplicative–multiplicative process in quasi-stochastic environment. It is shown that the duality theorems hold between primal and dual programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号