首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The two‐dimensional flows past a circular cylinder near a moving wall are simulated by lattice Boltzmann method. The wall moves at the inlet velocity and the Reynolds number ranges from 300 to 500. The influence of the moving wall on the flow patterns is demonstrated and the corresponding mechanism is illustrated by using instability theory. The correlations among flow features based on gap ratio are interpreted. Force coefficients, velocity profile and vortex structure are analyzed to determine the critical gap ratio. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
The flow around a circular cylinder placed close to a horizontal plane wall was investigated experimentally. Fluctuations of lift and drag of the cylinder and wall interference effects were studied in terms of the gap height between the cylinder and wall and the thickness of the turbulent wall boundary layer. The fluctuating fluid forces acting on the cylinder sharply increased, and the regular vortex shedding, i.e. Kárman vortex streets, started to form beyond a critical gap height. The formation of Kárman vortex streets was abruptly interrupted when the bottom of the cylinder came in contact with the outer layer of the boundary layer developed on the wall. This critical gap height correlated well with the thickness of the boundary layer.  相似文献   

3.
The flow characteristics around an elliptic cylinder with an axis ratio of AR=2 located near a flat plate were investigated experimentally. The elliptic cylinder was embedded in a turbulent boundary layer whose thickness is larger than the cylinder height. For comparison, the same experiment was carried out for a circular cylinder having the same vertical height. The Reynolds number based on the height of the cylinder cross-section was 14000. The pressure distributions on the cylinder surface and on the flat plate were measured for various gap distances between the cylinder and the plate. The wake velocity profiles behind the cylinder were measured using hot-wire anemometry. In the near-wake region, the vortices are shed regularly only when the gap ratio is greater than the critical value of G/B=0·4. The critical gap ratio is larger than that of a circular cylinder. The variation of surface pressure distributions on the elliptic cylinder with respect to the gap ratio is much smaller than that on the circular cylinder. This trend is more evident on the upper surface than the lower one. The surface pressures on the flat plate recover faster than those for the case of the circular cylinder at downstream locations. As the gap ratio increases, the drag coefficient of the cylinder itself increases, but the lift coefficient decreases. For all gap ratios tested in this study, the drag coefficient of the elliptic cylinder is about half that of the circular cylinder. The ground effect of the cylinder at small gap ratio constrains the flow passing through the gap, and restricts the vortex shedding from the cylinder, especially in the lower side of the cylinder wake. This constraint effect is more severe for the elliptic cylinder, compared to the circular cylinder. The wake region behind the elliptic cylinder is relatively small and the velocity profiles tend to approach rapidly to those of a flat plate boundary layer  相似文献   

4.
The conditions of onset and the character of the oscillations developing behind a circular cylinder located above a plane wall (screen) in a flow with a velocity profile of the boundary layer type are studied numerically. The dependence of the critical Reynolds number (at which a steady flow regime in the wake behind the cylinder is replaced by an oscillatory regime) on the cylinder-wall gap and the free-stream boundary layer thickness is found.  相似文献   

5.
We solve analytically the cessation flows of a Newtonian fluid in circular and plane Couette geometries assuming that wall slip occurs provided that the wall shear stress exceeds a critical threshold, the slip yield stress. In steady-state, slip occurs only beyond a critical value of the angular velocity of the rotating inner cylinder in circular Couette flow or of the speed of the moving upper plate in plane Couette flow. Hence, in cessation, the classical no-slip solution holds if the corresponding wall speed is below the critical value. Otherwise, slip occurs only initially along both walls. Beyond a first critical time, slip along the fixed wall ceases, and beyond a second critical time slip ceases also along the initially moving wall. Beyond this second critical time no slip is observed and the decay of the velocity is faster. The velocity decays exponentially in all regimes and the decay is reduced with slip. The effects of slip and the slip yield stress are discussed.  相似文献   

6.
The flow of a gravity current past a circular cylinder mounted above a bottom wall is studied by means of two-dimensional Navier–Stokes simulations. The investigation focuses on the effects of the gap size on the forces acting on the cylinder. The interaction of the current with the cylinder can be divided into an impact, a transient, and a quasisteady stage. During the impact stage, the gravity current meets the cylinder, and the drag increases towards a maximum, while the lift undergoes a drastic fluctuation which increases noticeably with the gap size. During the quasisteady stage, the flow past the cylinder resembles that observed in constant-density boundary layer flows past cylinders: Karman vortex shedding is observed for sufficiently large gap sizes, while a vorticity cancellation mechanism is responsible for the suppression of vortex shedding at small gap sizes. On the other hand, interesting differences that distinguish the gravity current case from the constant-density case are the presence in the gravity current flow of a component of the mean quasisteady lift due to buoyancy, and another component from the deflection of the wake towards the wall by the constriction of the dense fluid flow downstream of the cylinder, as well as the cancellation of vortex shedding for all gap sizes when the ratio of the channel depth to lock height is decreased from 5 to 1.  相似文献   

7.
Two‐dimensional flows past a stationary circular cylinder near a plane boundary are numerically simulated using an immersed interface method with second‐order accuracy. Instead of a fixed wall, a moving wall with no‐slip boundary is considered to avoid the complex involvement of the boundary layer and to focus only on the shear‐free wall proximity effects for investigating the force dynamics and flow fields. To analyze the convergence and accuracy of our implementation, numerical studies have been first performed on a simple test problem of rotational flow, where the second order of convergence is confirmed through numerical experiments and an optimal range of relative grid‐match ratio of Lagrangian to Eulerian grid sizes has been recommended. By comparing the force quantities and the Strouhal number, the accuracy of this method has been demonstrated on the flow past a stationary isolated cylinder. The cylinder is then put in proximity to the wall to investigate the shear‐free wall proximity effects in the low Reynolds number regime (20≤Re≤200). The gap ratio, e/D, where e denotes the gap between the cylinder and the moving wall and D denotes the diameter of the cylinder, is taken from 0.10 to 2.00 to determine the critical gap ratio, (e/D)critical, for the alternate vortex shedding, where the fluid forces, flow fields and the streamwise velocity profiles are studied. One of the key findings is that the (e/D)critical for the alternate vortex shedding decreases as the Reynolds number increases. We also find that, in this low Reynolds number regime, the mean drag coefficient increases and peaks at e/D = 0.5 with the increase of e/D and keeps decreasing gently from e/D = 0.5 to e/D = 2.0, while the mean lift coefficient decreases monotonically with the increase of e/D. New correlations are then proposed for computing force coefficients as a function of Re and e/D for a cylinder in the vicinity of a moving plane wall. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
Two-degree-of-freedom vortex-induced vibrations (VIV) of a circular cylinder close to a plane boundary are investigated numerically. The Reynolds-Averaged Navier-Stokes (RANS) equations are solved using the Arbitrary Lagrangian Eulerian (ALE) scheme with a k-ω turbulence model closure. The numerical model is validated against experimental data of VIV of a cylinder in uniform flow and VIV of a cylinder close to a plane boundary at low mass ratios. The numerical results of the vibration mode, vibration amplitude and frequency agree well with the experimental data. VIV of a circular cylinder close to a plane boundary is simulated with a mass ratio of 2.6 and gap ratios of e/D=0.002 and 0.3 (gap ratio is defined as the ratio of gap between the cylinder and the bed (e) to cylinder diameter (D)). Simulations are carried out for reduced velocities ranging from 1 to 15 and Reynolds numbers ranging from 1000 to 15 000. It is found that vortex-induced vibrations occur even if the initial gap ratio is as small as e/D=0.002, although reported research indicated that vortex shedding behind a fixed circular cylinder is suppressed at small gap ratios (e/D<0.3 or 0.2). It was also found that vibration amplitudes are dependant on the bouncing back coefficient when the cylinder hits the plane boundary. Three vortex shedding modes are identified according to the numerical results: (i) single-vortex mode where the vortices are only shed from the top of the cylinder; (ii) vortex-shedding-after-bounce-back mode; (iii) vortex-shedding-before-bounce-back mode. It was found that the vortex shedding mode depends on the reduced velocity.  相似文献   

9.
A numerical study on the flow past a square cylinder placed parallel to a wall, which is moving at the speed of the far field has been made. Flow has been investigated in the laminar Reynolds number (based on the cylinder length) range. We have studied the flow field for different values of the cylinder to wall separation length. The governing unsteady Navier–Stokes equations are discretized through the finite volume method on a staggered grid system. A SIMPLE type of algorithm has been used to compute the discretized equations iteratively. A shear layer of negative vortex generates along the surface of the wall, which influences the vortex shedding behind the cylinder. The flow‐field is distinct from the flow in presence of a stationary wall. An alternate vortex shedding occurs for all values of gap height in the unsteady regime of the flow. The strong positive vortex pushes the negative vortex upwards in the wake. The gap flow in the undersurface of the cylinder is strong and the velocity profile overshoots. The cylinder experiences a downward force for certain values of the Reynolds number and gap height. The drag and lift are higher at lower values of the Reynolds number. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
The behavior of a light cylindrical body of circular cross-section under horizontal vibration in a rectangular cavity filled with a fluid is experimentally investigated. At critical vibration intensity the body is repelled from the upper side of the cavity and takes up a stable suspended position, in which the gravity field is balanced by the vibrational repulsive force, executing longitudinal oscillations. As the vibrations are intensified, the gap between the cylinder and the wall widens. A new form of instability, namely, the excitation of the tangential motion of the body along the vibration axis, is found to exist on the supercritical range. The cylinder is at a finite distance from the upper side of the cavity and the tangential motion is due to the loss of symmetry of the oscillating motion. The transition of the cylinder to the suspended state and its return to the wall, as well as the excitation of the average longitudinal motion and its cessation, occur thresholdwise and have a hysteresis. The body dynamics are studied as a function of the dimensionless vibration frequency.  相似文献   

11.
The spanwise correlation of a circular cylinder and a trapezoidal bluff body placed inside a circular pipe in fully developed turbulent regime is studied using hotwire anemometer. The present configuration possesses complex fluid structure interaction owing to the following features: high blockage effect; low aspect ratio of the body; upstream turbulence and interaction of axisymmetric flow with a two dimensional bluff body. The spatial correlation of such configuration is seldom reported in the literature. Results are presented for Reynolds number of ReD=1×105. Three different blockage ratios (0.14, 0.19 and 0.28) are considered in the present study. Correlation coefficient is observed to improve with increase in blockage ratio. Compared to a circular cylinder, a trapezoidal bluff body possesses high correlation length. The near wall effects tend to increase the phase drift, which is reflected in low correlation coefficients close to the pipe wall. The results show that the simultaneous effect of curvature, low aspect ratio and upstream turbulence reduces the correlation coefficients significantly as compared to unconfined and confined (parallel channel) flows. The low frequency modulations with a circular cylinder are higher for lower blockage ratios. The three-dimensionality of vortex shedding for trapezoid with a blockage ratio of 0.28 was observed to be lower compared to circular cylinder and all other blockage ratios. Low frequency modulations were found to be responsible for weak vortex shedding from a circular cylinder compared to a trapezoidal bluff body. The vortex shedding is observed to be nearly two dimensional in case of a trapezoidal bluff body of blockage ratio 0.28.  相似文献   

12.
The present work is aimed to study mixed convection heat transfer characteristics for a lid-driven air flow within a square enclosure having a circular body. Flows are driven by the left lid, which slides in its own plane constant velocity. This wall is isothermal and it moves up or down in y direction while the other walls remain stationary. The horizontal walls are adiabatic. The cavity is differentially heated and the left wall is maintained at a higher temperature than the right wall. Three different temperature boundary conditions were applied for the inner cylinder as adiabatic, isothermal or conductive. The computation is carried out for wide ranges of Richardson numbers, diameter of inner cylinder and center and location of the inner cylinder. It was found that the most effective parameter on flow field and temperature distribution is the orientation of the moving lid. The circular body can be a control parameter for heat and fluid flow. An interesting obtained result that the thermal conductivity becomes insignificant for small values of diameter of the circular body.  相似文献   

13.
基于浸入边界-格子Boltzmann通量求解法,开展了雷诺数Re=100不同几何参数下单椭圆柱及串列双椭圆柱绕流流场与受力特性对比研究。结果表明,随长短轴比值的增加,单椭圆柱绕流阻力系数先减小后缓慢上升,最大升力系数则随长短轴比值的增大而减小;尾迹流动状态从周期性脱落涡到稳定对称涡。间距是影响串列圆柱及椭圆柱流场流动状态的主要因素,间距较小时,串列圆柱绕流呈周期性脱落涡状态,而椭圆柱则为稳定流动;随着间距增加,上下游圆柱及椭圆柱尾迹均出现卡门涡街现象,且串列椭圆柱临界间距大于串列圆柱。串列椭圆柱阻力的变化规律与圆柱的基本相同,上游平均阻力大于下游阻力;上游椭圆柱阻力随着间距的变大先减小,下游随间距的变大而增加,当间距达到临界间距时上下游阻力跃升,随后出现小幅度波动再逐渐增加,并趋近于相同长短轴比值下单柱体绕流的阻力。  相似文献   

14.
Flow visualization, particle image velocimetry and hot-film anemometry have been employed to study the fluid flow around a circular cylinder near to a plane wall for Reynolds numbers, based on cylinder diameter, between 1200 and 4960. The effect of changing the gap between the cylinder and the wall, G, from G=0 (cylinder touching the wall) to G/D=2, was investigated. It is shown that the flow may be characterized by four distinct regions. (a) For very small gaps, G/D≤0·125, the gap flow is suppressed or extremely weak, and separation of the boundary layer occurs both upstream and downstream of the cylinder. Although there is no regular vortex shedding, there is a periodicity associated with the outer shear-layer. (b) In the “small gap ratio” region, 0·125<G/D<0·5, the flow is very similar to that for very small gaps, except that there is now a pronounced pairing between the inner shear-layer shed from the cylinder and the wall boundary layer. (c) Intermediate gap ratios, 0·5<G/D<0·75, are characterized by the onset of vortex shedding from the cylinder. (d) For the fourth region, characterized by the largest gap ratios considered, G/D>1·0, there is no separation of the wall boundary layer, either upstream or downstream of the cylinder.  相似文献   

15.
In this article, adaptive mesh refinement (AMR) is performed to simulate flow around both stationary and moving boundaries. The finite-difference approach is applied along with a sharp interface immersed boundary (IB) method. The Lagrangian polynomial is employed to facilitate the interpolation from a coarse to a fine grid level, while a weighted-average formula is used to transfer variables inversely. To save memory, the finest grid is only generated in the local areas close to the wall boundary, and the mesh is dynamically reconstructed based on the location of the wall boundary. The Navier-Stokes equations are numerically solved through the second-order central difference scheme in space and the third-order Runge-Kutta time integration. Flow around a circular cylinder rotating in a square domain is firstly simulated to examine the accuracy and convergence rate. Then three cases are investigated to test the validity of the present method: flow past a stationary circular cylinder at low Reynolds numbers, flow past a forced oscillating circular cylinder in the transverse direction at various frequencies, and a free circular cylinder subjected to vortex-induced vibration in two degrees of freedom. Computational results agree well with these in the literature and the flow fields are smooth around the interface of different refinement levels. The effect of refinement level has also been evaluated. In addition, a study for the computational efficiency shows that the AMR approach is helpful to reduce the total node number and speed up the time integration, which could prompt the application of the IB method when a great near-wall spatial resolution is required.  相似文献   

16.
Air-flow around a circular cylinder placed above a free surface and liquid flow under the free surface were investigated experimentally in a wind/wave tunnel. The cylinder spanned the tunnel test-section and was oriented normal to the freestream direction. The main objective of this study was to investigate the interaction of the cylinder wake with the free surface. The flow structure was analyzed for various gap widths, H, between the cylinder and the free surface using a digital particle image velocimetry (PIV) system with a spatial resolution of 2048×2048 pixels. The Reynolds number based on the cylinder diameter was 3.3×103. For each experimental condition, 400 instantaneous velocity fields were measured and ensemble-averaged to obtain spatial distributions of the mean velocity and turbulence statistics. The results showed that the cylinder near-wake inclined upward due to the influence of the free surface elevation. Vortices were shed, even at a small gap ratio of H/D=0.25, where D is the cylinder diameter. Strong jet-like flow appeared in the gap beneath the cylinder. At a gap ratio of H/D=0.50, the jet flow exhibited a quasi-periodic vibration with a period of 2–3 s. The free surface deformation was caused by the pressure difference in the air-flow immediately above it. As the gap ratio increased, the inclination angle of the wake and the height of the free surface elevation decreased gradually. The liquid flow under the free surface followed a convective flow motion, and the range of the convection depended on the gap width between the cylinder and the free surface.  相似文献   

17.
The purpose of this investigation is to study the convective heat transfer from a horizontal circular cylinder under the effect of a solid plane wall. The full Navier–Stokes and energy equations for two-dimensi onal steady flow are solved by a finite element method. The variations in surface shear stress, local pressure and Nusselt number around the surface of the cylinder as well as the predicted values of average Nusselt number, location of separation and some flow and temperature fields are presented. It is found that the average Nusselt number and drag force increase as the gap between the cylinder and the wall is increased.  相似文献   

18.
The flow characteristics around an inclined elliptic cylinder located near a flat plate were investigated experimentally. The axis ratio of the elliptic cylinder was AR=2. The pressure distributions along the surface of the cylinder and the flat plate were measured by varying the angle of attack of the elliptic cylinder. The velocity profiles behind the cylinder were measured using hot-wire anemometry. When the angle of attack varies, the peak pressure location on the windward cylinder surface moves towards the rear edge of the cylinder, while that on the leeward surface moves towards the front edge of the cylinder. The vortex-shedding frequency also gradually decreases, defining a critical angle of attack for each gap ratio. The location of the minimum pressure on the flat plate surface moves downstream for positive angles of attack, while it moves upstream for negative angles of attack. Negative angles of attack cause a greater disturbance in the boundary layer near the wall compared to positive angles of attack. This shows that the separated wall shear layer from the boundary layer and the lower shear layer of the cylinder wake are strongly merged compared to other cases.  相似文献   

19.
The wake of a surface-mounted finite-height circular cylinder and the associated vortex patterns are strongly dependent on the cylinder aspect ratio and the thickness of the boundary layer on the ground plane relative to the dimensions of the cylinder. Above a critical aspect ratio, the mean wake is characterized by streamwise tip vortex structures and Kármán vortex shedding from the sides of the cylinder. Below a critical aspect ratio, a unique mean wake structure is observed. Recent experimental studies in the literature that used phase-averaged techniques, as well as recent numerical simulations, have led to an improved physical understanding of the near-wake vortex flow patterns. However, the flow above the free end of the finite circular cylinder, and its relationship to the near wake, has not been systematically studied. The effects of aspect ratio and boundary layer thickness on the free-end flow field are also not completely understood, nor has the influence of Reynolds number on the free-end flow field been fully explored. Common features associated with the free end include separation from the leading edge, a mean recirculation zone containing a prominent cross-stream arch (or mushroom) vortex, and reattachment onto the free-surface. Other flow features that remain to be clarified include a separation bubble near the leading edge, one or two cross-stream vortices within this separation bubble, the origins of the streamwise tip or trailing vortices, and various critical points in the near-surface flow topology. This paper reviews the current understanding of the flow above the free end of a surface-mounted finite-height circular cylinder, with a focus on models of the flow field, surface oil flow visualization studies, pressure and heat flux distributions on the free-end surface, measurements of the local velocity field, and numerical simulations, found in the literature.  相似文献   

20.
The behaviour of the wake Strouhal number for flow past a cylinder close to a free surface at both low and moderate Froude numbers is investigated numerically. For the low Froude number case (i.e., gravity-dominated), the results obtained are similar to those for flow past a cylinder close to an adjacent no-slip boundary. As the distance between the wall and the cylinder is reduced, the Strouhal number, as measured from the time varying lift, increases to a maximum at a gap ratio of 0.70. Further gap reduction leads to a rapid decrease in the Strouhal number, with shedding finally ceasing altogether at gap ratios below 0.16. The agreement between the results for a free surface and a no-slip boundary suggests that the mechanism behind the suppression of vortex shedding is common. For flow at a fixed gap ratio and a moderate Froude number, two distinctly different wake states are observed with the flow passing over the cylinder tending to switch from a state of attachment to the free surface, to one of separation from it, and then back again in a pseudo-periodic fashion. Even though there is a significant difference in Reynolds number, the predicted numerical two-dimensional behaviour is found to compare favourably with the experimental observations at higher Reynolds number.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号