首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents results of a numerical study of vortex-induced vibrations of two side-by-side circular cylinders of different diameters in steady incompressible flow. The two-dimensional Reynolds-averaged Navier–Stokes equations with a SST kω turbulence model are solved using the Petrov–Galerkin finite element method and the Arbitrary-Lagrangian–Eulerian scheme. The diameter ratio of the two cylinders is fixed at 0.1 and the mass ratio of both cylinders is 5.0. Both cylinders are constrained to oscillate in the transverse direction only. The Reynolds number based on the large cylinder diameter and free stream velocity is fixed at 5000. The effects of the reduced velocities of the cylinders on the vibration amplitude and vortex shedding regimes are investigated. It is found that for the range of parameters considered, collision between the two cylinders is dependent on the difference of the reduced velocities of the cylinders. Presence of the small cylinder in the proximity of the large one appears to have significant effects on the vortex shedding regime and vibration amplitude of the large cylinder.  相似文献   

2.
The influence of a wake-mounted splitter plate on the flow around a surface-mounted circular cylinder of finite height was investigated experimentally using a low-speed wind tunnel. The experiments were conducted at a Reynolds number of Re=7.4×104 for cylinder aspect ratios of AR=9, 7, 5 and 3. The thickness of the boundary layer on the ground plane relative to the cylinder diameter was δ/D=1.5. The splitter plates were mounted on the wake centreline with negligible gap between the base of the cylinder and the leading edge of the plate. The lengths of the splitter plates, relative to the cylinder diameter, ranged from L/D=1 to 7, and the plate height was always equal to the cylinder height. Measurements of the mean drag force coefficient were obtained with a force balance, and measurements of the vortex shedding frequency were obtained with a single-component hot-wire probe situated in the wake of the cylinder–plate combination. Compared to the well-studied case involving an infinite circular cylinder, the splitter plate was found to be a less effective drag-reduction device for finite circular cylinders. Significant reduction in the mean drag coefficient was realized only for the finite circular cylinder of AR=9 with intermediate-length splitter plates of L/D=1–3. The mean drag coefficients of the other cylinders were almost unchanged. In terms of its effect on vortex shedding, a splitter plate of sufficient length was able to suppress Kármán vortex shedding for all of the finite circular cylinders tested. For AR=9, vortex shedding suppression occurred for L/D≥5, which is similar to the case of the infinite circular cylinder. For the smaller-aspect-ratio cylinders, however, the splitter plate was more effective than what occurs for the infinite circular cylinder: for AR=3, vortex shedding suppression occurred for all of the splitter plates tested (L/D≥1); for AR=5 and 7, vortex shedding suppression occurred for L/D≥1.5.  相似文献   

3.
Two-degree-of-freedom vortex-induced vibrations (VIV) of a circular cylinder with and without two smaller control cylinders are investigated numerically by computational fluid dynamics (CFD) models coupling with a fluid–structure interaction (FSI) computational method. The numerical model is validated against experimental data of VIV of an isolated cylinder in uniform current. The study is aimed to investigate the effect of smaller control cylinders on VIV suppression. The trajectories of cylinder motion, amplitude response, and temporal evolution of vortex shedding and streamlines are obtained by conducting a series of simulations. And the effect of Reynolds number, located angle and rotational rate of small control cylinders are discussed in detail. It is found that placing small cylinders at 45° to the downstream vector can achieve a good suppression effect, but the effect is different at different Re. Rotating control cylinders with a reasonable rotation velocity can further enhance the VIV suppression by injecting enough momentum into the boundary layer of the main cylinder. The best effect is found at Uc=10, which has a 64.56% reduction in the transverse vibration response.  相似文献   

4.
Two-degree-of-freedom vortex-induced vibrations (VIV) of a circular cylinder close to a plane boundary are investigated numerically. The Reynolds-Averaged Navier-Stokes (RANS) equations are solved using the Arbitrary Lagrangian Eulerian (ALE) scheme with a k-ω turbulence model closure. The numerical model is validated against experimental data of VIV of a cylinder in uniform flow and VIV of a cylinder close to a plane boundary at low mass ratios. The numerical results of the vibration mode, vibration amplitude and frequency agree well with the experimental data. VIV of a circular cylinder close to a plane boundary is simulated with a mass ratio of 2.6 and gap ratios of e/D=0.002 and 0.3 (gap ratio is defined as the ratio of gap between the cylinder and the bed (e) to cylinder diameter (D)). Simulations are carried out for reduced velocities ranging from 1 to 15 and Reynolds numbers ranging from 1000 to 15 000. It is found that vortex-induced vibrations occur even if the initial gap ratio is as small as e/D=0.002, although reported research indicated that vortex shedding behind a fixed circular cylinder is suppressed at small gap ratios (e/D<0.3 or 0.2). It was also found that vibration amplitudes are dependant on the bouncing back coefficient when the cylinder hits the plane boundary. Three vortex shedding modes are identified according to the numerical results: (i) single-vortex mode where the vortices are only shed from the top of the cylinder; (ii) vortex-shedding-after-bounce-back mode; (iii) vortex-shedding-before-bounce-back mode. It was found that the vortex shedding mode depends on the reduced velocity.  相似文献   

5.
Wind tunnel experiments were conducted to measure the vortex shedding frequencies for two circular cylinders of finite height arranged in a staggered configuration. The cylinders were mounted normal to a ground plane and were partially immersed in a flat-plate turbulent boundary layer. The Reynolds number based on the cylinder diameter was ReD=2.4×104, the cylinder aspect ratio was AR=9, the boundary layer thickness relative to the cylinder height was δ/H=0.4, the centre-to-centre pitch ratio was varied from P/D=1.125 to 5, and the incidence angle was incremented in small steps from α=0° to 90°. The Strouhal numbers were obtained behind the upstream and downstream cylinders using hot-wire anemometry. From the behaviour of the Strouhal number data obtained at the mid-height position, the staggered configuration could be broadly classified by the pitch ratio as closely spaced (P/D<1.5), moderately spaced (1.5?P/D?3), or widely spaced (P/D>3). The closely spaced staggered finite cylinders were characterized by the same Strouhal number measured behind both cylinders, an indication of single bluff-body behaviour. Moderately spaced staggered finite cylinders were characterized by two Strouhal numbers at most incidence angles. Widely spaced staggered cylinders were characterized by a single Strouhal number for both cylinders, indicative of synchronized vortex shedding from both cylinders at all incidence angles. For selected staggered configurations representative of closely spaced, moderately spaced, or widely spaced behaviour, Strouhal number measurements were also made along the vertical lengths of the cylinders, from the ground plane to the free end. The power spectra showed that for certain cylinder arrangements, because of the influences of the cylinder–wall junction and free-end flow fields, the Strouhal numbers and flow patterns change along the cylinder.  相似文献   

6.
The effect of feedback control on vortex shedding from two tandem cylinders in cross-flow is investigated experimentally. The objective is to reduce the downstream cylinder response to vortex shedding and turbulence excitations. Feedback control is applied to a resonant case, where the frequency of vortex shedding coincides with the resonance frequency of the downstream cylinder, and to a nonresonant case, in which the shedding frequency is about 30% higher than the downstream cylinder resonance frequency. A “synthetic jet” issuing through a narrow slit on the upstream cylinder is employed to impart the control effect to the flow. The effect of open-loop control, using pure tones and white noise to activate the synthetic jet, is also examined. It is demonstrated that feedback control can significantly reduce the downstream cylinder response to both vortex shedding and turbulence excitations. For example, the cylinder response is reduced by up to 70% in the resonant case and 75% in the nonresonant case. Open-loop control also can reduce the cylinder response, but is less effective than feedback control. The frequency of vortex shedding is found to increase substantially when white noise is applied. This increase in the shedding frequency is higher than the largest frequency shift that could be produced by open-loop tone excitation.  相似文献   

7.
The turbulent flow around two cylinders in tandem at the sub-critical Reynolds number range of order of 105 and pitch to diameter ratio of 3.7 is investigated by using time-resolved Particle Image Velocimetry (TRPIV) of 1 kHz and 8 kHz. The bi-stable flow regimes including a flow pattern I with a strong vortex shedding past the upstream and the downstream cylinder, as well as a flow pattern II corresponding to a weak alternating vortex shedding with reattachment past the upstream cylinder are investigated. The structure of this “reattachment regime” has been analyzed in association with the vortex dynamics past the downstream cylinder, by means of POD and phase-average decomposition. These elements allowed interconnection among all the measured PIV planes and hence analysis of the reattachment structure and the flow dynamics past both cylinders. The results highlight fundamental differences of the flow structure and dynamics around each cylinder and provide the ‘gap’ flow nature between the cylinders. Thanks to a high-speed camera of 8 kHz, the shear-layer vortices tracking has been possible downstream of the separation point and the quantification of their shedding frequency at the present high Reynolds number range has been achieved. This issue is important regarding fluid instabilities involved in the fluid–structure interaction of cylinder arrays in nuclear reactor systems, as well as acoustic noise generated from the tandem cylinders of a landing gear in aeronautics.  相似文献   

8.
This paper presents an experimental study of the flow around four circular cylinders arranged in a square configuration. The Reynolds number was fixed at Re=8000, the pitch-to-diameter ratio between adjacent cylinders was varied from P/D=2 to 5 and the incidence angle was changed from α=0° (in-line square configuration) to 45° (diamond configuration) at an interval of 7.5°. The flow field was measured using digital Particle Image Velocimetry (PIV) to examine the vortex shedding characteristics of the cylinders, together with direct measurement of fluid dynamic forces (lift and drag) on each cylinder using a piezoelectric load cell. Depending on the pitch ratio, the flow could be broadly classified as shielding regime (P/D≤2), shear layer reattachment regime (2.5≤P/D≤3.5) and vortex impinging regime (P/D≥4). However, this classification is valid only in the case that the cylinder array is arranged nearly in-line with the free stream (α≈0°), because the flow is also sensitive to α. As α increases from 0° to 45°, each cylinder experiences a transition of vortex shedding pattern from a one-frequency mode to a two-frequency mode. The flow interference among the cylinders is complicated, which could be non-synchronous, quasi-periodic or synchronized with a definite phase relationship with other cylinders depending on the combined value of α and P/D. The change in vortex pattern is also reflected by some integral parameters of the flow such as force coefficients, power spectra and Strouhal numbers.  相似文献   

9.
This paper presents a numerical study to address wake control of a circular cylinder subjected to two-dimensional laminar flow regime using single and multiple flexible splitter plates attached to the cylinder. Three different cases are presented in the study, covering cylinders with one, two and three horizontally attached splitter plates while the locations of the plates around the cylinders are varied. The length of the splitter plates was equal to the cylinder diameter and Reynolds number was 100. Due to the flexibility of the plates, the problem was modeled as a Fluid–Structure Interaction (FSI) problem and the commercial finite element software, Comsol Multiphysics, was utilized to solve this problem using Arbitrary Lagrangian–Eulerian (ALE) method. Vortex shedding frequency and fluid forces acting on the cylinder are investigated, along with a comprehensive parametric study to identify the optimum arrangement of the plates for maximum drag reduction and maximum vortex shedding frequency reduction. The numerical results associated to the flexible splitter plates are also compared with the corresponding rigid splitter plate cases investigated in a previous study. Moreover, the tip amplitude of the plates and the maximum strains were measured in order to find an optimum position for placing a piezoelectric polymer to harvest energy from the flow.  相似文献   

10.
A dual-step cylinder is comprised of two cylinders of different diameters. A large diameter cylinder (D) with low aspect ratio (L/D) is attached to the mid-span of a small diameter cylinder (d). The present study investigates the effect of Reynolds number (ReD) and L/D on dual step cylinder wake development for D/d=2, 0.2≤L/D≤3, and two Reynolds numbers, ReD=1050 and 2100. Experiments have been performed in a water flume facility utilizing flow visualization, Laser Doppler Velocimetry (LDV), and Particle Image Velocimetry (PIV). The results show that vortex shedding occurs from both the large and small diameter cylinders for 1≤L/D≤3 at ReD=2100 and 2≤L/D≤3 at ReD=1050. At these conditions, large cylinder vortices predominantly form vortex loops in the wake and small cylinder vortices form half-loop vortex connections. At lower aspect ratios, vortex shedding from the large cylinder ceases, with the dominant frequency in the large cylinder wake attributed to the passage of vortex filaments connecting small cylinder vortices. At these lower aspect ratios, the presence of the large cylinder induces periodic vortex dislocations. Increasing L/D increases the frequency of occurrence of vortex dislocations and decreases the dominant frequency in the large cylinder wake. The identified changes in wake topology are related to substantial variations in the location of boundary layer separation on the large cylinder, and, consequently, changes in the size of the vortex formation region. The results also show that the Reynolds number has a substantial effect on wake vortex shedding frequency, which is more profound than that expected for a uniform cylinder.  相似文献   

11.
The flow over two square cylinders in staggered arrangement is simulated numerically at a fixed Reynolds number (\(Re =150\)) for different gap spacing between cylinders from 0.1 to 6 times a cylinder side to understand the flow structures. The non-inclined square cylinders are located on a line with a staggered angle of \(45^{\circ }\) to the oncoming velocity vector. All numerical simulations are carried out with a finite-volume code based on a collocated grid arrangement. The effects of vortex shedding on the various features of the flow field are numerically visualized using different flow contours such as \(\lambda _{2}\) criterion, vorticity, pressure and magnitudes of velocity to distinguish the distinctive flow patterns. By changing the gap spacing between cylinders, five different flow regimes are identified and classified as single body, periodic gap flow, aperiodic, modulated periodic and synchronized vortex shedding regimes. This study revealed that the observed multiple frequencies in global forces of the downstream cylinder in the modulated periodic regime are more properly associated with differences in vortex shedding frequencies of individual cylinders than individual shear layers reported in some previous works; particularly, both shear layers from the downstream cylinder often shed vortices at the same multiple frequencies. The maximum Strouhal number for the upstream cylinder is also identified at \({G}^{*}=1\) for aperiodic flow pattern. Furthermore, for most cases studied, the downstream cylinder experiences larger drag force than the upstream cylinder.  相似文献   

12.
The effect of fins on vortex shedding and acoustic resonance is investigated for isolated and two tandem cylinders exposed to cross-flow in a rectangular duct. Three spacing ratios between the tandem cylinders (S/De=1.5, 2 and 3) are tested for a Reynolds number range from 1.6×104 to 1.1×105. Measurements of sound pressure as well as mean and fluctuating velocities are performed for bare and finned cylinders with three different fin densities. The effect of fins on the sound pressure generated before the onset of acoustic resonance as well as during the pre-coincidence and coincidence resonance is found to be rather complex and depends on the spacing ratio between cylinders, the fin density and the nature of the flow-sound interaction mechanism.For isolated cylinders, the fins reduce the strength of vortex shedding only slightly, but strongly attenuate the radiated sound before and during the occurrence of acoustic resonance. This suggests that the influence of the fins on correlation length is stronger than on velocity fluctuations. In contrast to isolated cylinders, the fins in the tandem cylinder case enhance the vortex shedding process at off-resonant conditions, except for the large spacing case which exhibits a reversed effect at high Reynolds numbers. Regarding the acoustic resonance of the tandem cylinders, the fins promote the onset of the coincidence resonance, but increasing the fin density drastically weakens the intensity of this resonance. The fins are also found to suppress the pre-coincidence resonance for the tandem cylinders with small spacing ratios (S/De=1.5, 2 and 2), but for the largest spacing case (S/De=3), they are found to have minor effects on the sound pressure and the lock-in range of the pre-coincidence resonance.  相似文献   

13.
Passive control of the wake behind a circular cylinder in uniform flow is studied by numerical simulation at ReD=80. Two small control cylinders are placed symmetrically along the separating shear layers at various stream locations. In the present study, the detailed flow mechanisms that lead to a significant reduction in the fluctuating lift but maintain the shedding vortex street are clearly revealed. When the stream locations lie within 0.8≤XC/D≤3.0, the alternate shedding vortex street remains behind the control cylinders. In this case, the symmetric standing eddies immediately behind the main cylinder and the downstream delay of the shedding vortex street are the two primary mechanisms that lead to a 70–80% reduction of the fluctuating lift on the main cylinder. Furthermore, the total drag of all the cylinders still has a maximum 5% reduction. This benefit is primarily attributed to the significant reduction of the pressure drag on the main cylinder. Within XC/D>3.0, the symmetry of the standing eddy breaks down and the staggered vortex street is similar to that behind a single cylinder at the same Reynolds number. In the latter case, the mean pressure drag and the fluctuating lift coefficients on the main cylinder will recover to the values of a single cylinder.  相似文献   

14.
Successful numerical simulations can reveal important flow characteristics and information which are extremely difficult to obtain experimentally. Two- and three-dimensional (3-D) numerical simulations of cross-flow around four cylinders in an in-line square configuration are performed using a finite-volume method. For 2-D studies, the Reynolds numbers (Re) are chosen to be Re=100 and 200 and the spacing ratio L/D is set at 1.6, 2.5, 3.5, 4.0 and 5.0. For the 3-D investigation, the simulation is only performed at a Re=200, a spacing ratio L/D=4.0 and an aspect ratio H/D=16. The 2-D studies reveal three distinct flow patterns: (I) a stable shielding flow; (II) a wiggling shielding flow and (III) a vortex shedding flow. A transformation of the flow pattern from (I) to (II) at Re=100 will increase the amplitude of the maximum fluctuating pressure on the downstream cylinder surface by 4–12 times, while a transformation of the flow pattern from (II) to (III) will enhance the maximum fluctuating pressure amplitude by 2–3 times. There is a large discrepancy between 2-D simulation and flow visualization results at L/D=4.0 and Re=200. A probable cause could be the strong 3-D effect at the ends of the cylinder at low H/D. It was found that, for an in-line square configuration at critical L/D and when H/D is lower than a certain value, 3-D effects are very significant at the ends of the cylinders. In such cases, a time-consuming 3-D numerical simulation will have to be performed if full replication of the flow phenomenon were to be achieved.  相似文献   

15.
This work aims at understanding the flow and heat transfer through a microcavity populated with micropins, representing a layer of a 3D integrated electronic chip stack with integrated cooling. The resulting vortex shedding behavior and its effect on the heat removal is analyzed in the Reynolds number (Re) range from 60 to 450. The lateral confinement, expressed as the ratio of diameter to lateral distance between two cylinders’ centers, is varied between 0.1 and 0.5; the longitudinal confinement (diameter to longitudinal distance between two cylinders’ centers) between 0.25 and 0.5; and vertical confinement (diameter to microcavity height ratio) between 0.1 and 0.5. For a single pin, as the lateral confinement is increased, the Strouhal number (St) and the shedding frequency increase by up to 100%. The thermal performance represented by the spatiotemporal averaged Nusselt number (Nu), based on the average pin surface and fluid temperatures, is also enhanced by over 30%. A direct relationship between Nu and the shedding frequency was found. For a row of pins, Nu in the vortex shedding regime was found to be up to 300% higher compared to the steady case. A decrease in the longitudinal confinement, tested with rows of pins (either with 50 or 25 pins) in the streamwise direction, led to an upstream migration of the vortex shedding location and in more homogeneous but higher wall temperatures. This coincided with a drastic reduction of pressure losses and a 30% Nu enhancement for the same pumping power. Finally, the vertical confinement is also investigated with 3D simulations around a single cylinder. With increasing Re and vertical confinement, the wake becomes strongly three-dimensional. For a given Re, the increase of vertical confinement naturally shows a suppression or even a complete elimination of the vortex shedding due to a strong end-wall effect. Our results shed light on the effects of confinement on vortex shedding and related heat transfer in the integrated cooling of 3D chip stacks.  相似文献   

16.
陈威霖  及春宁  许栋 《力学学报》2018,50(4):766-775
对间距比为1.2和雷诺数为100的串列三圆柱涡激振动进行数值模拟, 发现在某个折合流速之后, 三圆柱的响应均呈现为随着折合流速增大而增大的弛振现象, 平衡位置偏移、低频振动以及旋涡脱落与圆柱运动之间的时机三个因素共同决定了弛振现象的出现. 进一步的研究发现, 串列三圆柱的弛振现象仅出现在质量比不大于2.0和雷诺数不大于100的工况下. 当质量比较大时, 串列三圆柱的平衡位置固定不变, 且圆柱的振动不规律, 使得旋涡脱落与圆柱运动的时机处于变化之中. 当雷诺数较高时, 最上游圆柱的平衡位置在折合流速较大时回到初始位置, 不再参与对圆柱振动的调节, 使得圆柱的振动响应不再规律, 旋涡脱落与圆柱运动的时机也一直处于变化之中.   相似文献   

17.
This paper presents a detailed investigation of Strouhal numbers, forces and flow structures in the wake of two tandem cylinders of different diameters. While the downstream cylinder diameter, D, was fixed at 25 mm, the upstream cylinder diameter, d, was varied from 0.24D to D. The spacing between the cylinders was 5.5d, at which vortices were shed from both cylinders. Two distinct vortex frequencies were detected behind the downstream cylinder for the first time for two tandem cylinders of the same diameter. The two vortex frequencies remained for d/D=1.0–0.4. One was the same as detected in the gap of the cylinders, and the other was of relatively low frequency and was ascribed to vortex shedding from the downstream cylinder. While the former, if normalized, declined progressively from 0.196 to 0.173, the latter increased from 0.12 to 0.203 with decreasing d/D from 1 to 0.24. The flow structure around the two cylinders is examined in the context of the observed Strouhal numbers. The time-averaged drag on the downstream cylinder also climbed with decreasing d/D, though the fluctuating forces dropped because vortices impinging upon the downstream cylinder decreased in scale with decreasing d/D.  相似文献   

18.
Steady state two-dimensional free convection heat transfer from a horizontal, isothermal cylinder in a horizontal array of cylinders consists of three isothermal cylinders, located underneath a nearly adiabatic ceiling is studied experimentally. A Mach–Zehnder interferometer is used to determine thermal field and smoke test is made to visualize flow field. Effects of the cylinders spacing to its diameter (S/D), and cylinder distance from ceiling to its diameter (L/D) on heat transfer from the centered cylinder are investigated for Rayleigh numbers from 1500 to 6000. Experiments are performed for an inline array configuration of horizontal cylinders of diameters D = 13 mm. Results indicate that due to the nearly adiabatic ceiling and neighboring cylinders, thermal plume resulted from the centered cylinder separates from cylinder surface even for high L/D values and forming recirculation regions. By decreasing the space ratio S/D, the recirculation flow strength increases. Also, by decreasing S/D, boundary layers of neighboring cylinders combine and form a developing flow between cylinders. The strength of developing flow depends on the cylinders Rayleigh number and S/D ratio. Due to the developing flow between cylinders, the vortex flow on the top of the centered cylinder appears for all L/D ratios and this vortex influences the value of local Nusselt number distribution around the cylinder.Variation of average Nusselt number of the centered cylinder depends highly on L/D and the trend with S/D depends on the value of Rayleigh number.  相似文献   

19.
The aeroacoustic response of two side-by-side circular cylinders in cross-flow is investigated experimentally. In order to investigate the effect of the gap between the cylinders on the acoustic resonance mechanism, six spacing ratios between the cylinders, in the range of T/D=1.25–3, have been investigated, where D is the diameter of the cylinders and T the centre-to-centre distance between them. Special attention is given to the intermediate spacing ratio range, which exhibits bistable flow regimes in the absence of resonance. During the tests, the acoustic cross-modes of the duct housing the cylinders are self-excited. For the intermediate spacing ratios, T/D=1.25, 1.35, 1.46 and 1.75, two distinct vortex-shedding frequencies at the off-resonance conditions are observed. These are associated with the wide and narrow wakes of the cylinders, as described in the literature. In this case, acoustic resonances occur at a Strouhal number, which is between those observed before the onset of resonance. The acoustic resonance synchronizes vortex shedding in the two wakes and thereby eliminates the bistable flow phenomenon. For large spacing ratios, T/D=2.5 and 3, vortex shedding occurs at a single Strouhal number at which the acoustic resonance is excited.  相似文献   

20.
Fundamental research on vortex-induced vibration (VIV) of a circular cylinder is still needed to build more rational VIV analysis tools for slender marine structures. Numerical results are presented for the response of an elastically mounted rigid cylinder at low mass damping constrained to oscillate transversely to a free stream. A two-dimensional Reynolds-averaged Navier–Stokes (RANS) code equipped with the SST kω turbulence model is applied for the numerical calculations. The numerical results are compared in detail with recent experimental and computational work. The Reynolds-averaging procedure erases the random disturbances in the vortex shedding process, so that the comparison between experimental data and the numerical results obtained by RANS codes may reveal some random characteristics of the VIV response. How random disturbance affects the observation in the experiments is discussed in this paper and the issues influencing the appearance of the upper branch in experiments are especially investigated. The absence of the upper branch in RANS simulations is explained in depth on account of discrepancies, which exist between experiments and RANS simulations. In addition, the formation of the 2P vortex shedding mode and its transition through the lock-in region are well reproduced in this investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号