首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The two-dimensional, nonlinear hydroelasticity of a mat-type very large floating structure (VLFS) is studied within the scope of linear beam theory for the structure and the nonlinear, Level I Green–Naghdi (GN) theory for the fluid. The beam equation and the GN equations are coupled through the kinematic and dynamic boundary conditions to obtain a new set of modified GN equations. These equations represent long-wave motion beneath an elastic plate. A set of jump conditions that are necessary for the continuity (or the matching) of the solutions in the open water region and that under the structure is derived through the use of the postulated conservation laws of mass, momentum, and mechanical energy. The resulting governing equations, subjected to the boundary and jump conditions, are solved by the finite-difference method in the time domain. The present model is applicable, for example, to the study of the hydroelastic response of a mat-type VLFS under the action of a solitary wave, or a frontal tsunami wave. Good agreement is observed between the model results and other published theoretical and numerical predictions, as well as experimental data. The results show that consideration of nonlinearity is important for accurate predictions of the bending moment of the floating elastic plate. It is found that the rigidity of the structure greatly affects the bending moment and displacement of the structure in this nonlinear theory.  相似文献   

2.
Based on the approximation theory adopting non-kirchhoff-Love assumption for three dimensional elastic plates with arbitrary shapes[1],[2], the author derives a functional of generalized variation for three dimensional elastic circular plates, thereby obtains a set of differential equations and the relate boundary conditions to establish a first order approximation theory for elastic circular plate with fixed boundary and under uniform loading on one of its surface. The analytical solution of this problem will present in another paper.  相似文献   

3.
Based on complex variables and conformal mapping, the elastic wave scat- tering and dynamic stress concentrations in the plates with two holes are studied by the refined dynamic equation of plate bending. The problem to be solved is changed to a set of infinite algebraic equations by an orthogonM function expansion method. As examples, under free boundary conditions, the numerical results of the dynamic moment concen- tration factors in the plates with two circular holes are computed. The results indicate that the parameters such as the incident wave number, the thickness of plates, and the spacing between holes have great effects on the dynamic stress distributions. The results are accurate because the refined equation is derived without any engineering hypothese.  相似文献   

4.
A semi-analytical approach to the elastic nonlinear stability analysis of rectangular plates is developed. Arbitrary boundary conditions and general out-of-plane and in-plane loads are considered. The geometrically nonlinear formulation for the elastic rectangular plate is derived using the thin plate theory with the nonlinear von Kármán strains and the variational multi-term extended Kantorovich method. Emphasis is placed on the effect of destabilizing loads and on the derivation of the solution methodologies required for tracking a highly nonlinear equilibrium path, namely: parameter continuation and arc-length continuation procedures. These procedures, which are commonly used for the solution of discretized structural systems governed by nonlinear algebraic equations, are augmented and generalized for the direct application to the PDE. The boundary value problem that results from the arc-length continuation scheme and consists of coupled differential, integral, and algebraic equations is re-formulated in a form that allows the use of standard numerical BVP solvers. The performance of the continuation procedures and the convergence of the multi-term extended Kantorovich method are examined through the solution of the two-dimensional Bratu–Gelfand benchmark problem. The applicability of the proposed approach to the tracking of the nonlinear equilibrium path in the post-buckling range is demonstrated through numerical examples of rectangular plates with various boundary conditions.  相似文献   

5.
In the theory of elastic thin plates, the bending of a rectangular plate on the elastic foundation is also a difficult problem. This paper provides a rigorous solution by the method of superposition. It satisfies the differential equation, the boundary conditions of the edges and the free corners. Thus we are led to a system of infinite simultaneous equations. The problem solved is for a plate with a concentrated load at its center. The reactive forces from the foundation should be made to be in equilibrium with the concentrated force to see whether our calculation is correct or not.  相似文献   

6.
This paper describes the modified bending equations of layered orthotropic plates in the first approximation. The approximation of the solution of the equation of the three-dimensional theory of elasticity by the Legendre polynomial segments is used to obtain differential equations of the elastic layer. For the approximation of equilibrium equations and boundary conditions of three-dimensional theory of elasticity, several approximations of each desired function (stresses and displacements) are used. The stresses at the internal points of the plate are determined from the defining equations for the orthotropic material, averaged with respect to the plate thickness. The construction of the bending equations of layered plates for each layer is carried out with the help of the elastic layer equations and the conjugation conditions on the boundaries between layers, which are conditions for the continuity of normal stresses and displacements. The numerical solution of the problem of bending of the rectangular layered plate obtained with the help of modified equations is compared with an analytical solution. It is determined that the maximum error in determining the stresses does not exceed 3 %.  相似文献   

7.
Flexural gravity wave scattering by multiple articulated floating elastic plates is investigated in the three cases for water of finite depth, infinite depth and shallow water approximation under the assumptions of two-dimensional linearized theory of water waves. The elastic plates are joined through connectors, which act as articulated joints. In the case when two semi-infinite plates are connected through a single articulation, using the symmetric characteristic of the plate geometry and the expansion formulae for wave-structure interaction problem, the velocity potentials are obtained in closed forms in the case of finite and infinite water depths. On the other hand, in the case of shallow water approximation, the continuity of energy and mass flux are used to obtain a system of equations for the determination of the full velocity potentials for wave scattering by multiple articulations. Further, using the results for single articulation and assuming that the articulated joints are wide apart, the wide-spacing approximation method is used to obtain the reflection coefficient for wave scattering due to multiple articulated floating elastic plates. The effects of the stiffness of the connectors, length of the elastic plates and water depth on the propagation of flexural gravity waves are investigated by analysing the reflection coefficient.  相似文献   

8.
Applying Lagrange–Germain’s theory of elastic thin plates and Hamiltonian formulation, the dynamics of cantilever plates and the problem of its vibration control are studied, and a general solution is finally given. Based on Hamiltonian and Lagrangian density function, we can obtain the flexural wave equation of the plate and the relationship between the transverse and the longitudinal eigenvalues.Based on eigenfunction expansion, dispersion equations of propagation mode of cantilever plates are deduced. By satisfying the boundary conditions of cantilever plates, the natural frequencies of the cantilever plate structure can be given.Then, analytic solution of the problem in plate structure is obtained. An hybrid wave/mode control approach, which is based on both independent modal space control and wave control methods, is described and adopted to analyze the active vibration control of cantilever plates. The low-order(controlled by modal control) and the high-order(controlled by wave control) frequency response of plates are both improved. The control spillover is avoided and the robustness of the system is also improved. Finally, simulation results are analyzed and discussed.  相似文献   

9.
含孔曲板弹性波散射与动应力分析   总被引:2,自引:0,他引:2  
胡超  李凤明  黄文虎 《力学学报》2003,35(2):240-245
基于敞口浅柱壳弹性波动方程及摄动方法,对无限大含孔曲板弹性波散射及动应力问题进行了分析研究,将经典薄板弯曲波动问题的分析解作为本问题的主项,给出了在稳态波下孔洞附近散射波的零阶渐近解。建立了求解含孔曲板弹性波散射与动应力问题的边界积分方程法,利用积分方程法可获得问题的近似分析解。并给出了无限大曲板圆孔附近动应力集中系数的数值结果,且对计算结果进行了分析与讨论。  相似文献   

10.
The hydroelastic responses of a horizontal plate impacting with the water at both forward and downward speeds are investigated theoretically. The longitudinal bending behavior of a horizontal elastic plate is approximated by the behavior of longitudinal strips represented as an Euler-beam model. A simplified method of hydroelastic responses of the plate is extended to the cases with forward speed and compressive force, for which the hydrodynamic pressure is found by solving a two-dimensional boundary value problem based on the linearized wave theory. In order to validate the theoretical model, a fully-coupled algorithm in LS-DYNA and the available experimental measurements are used for the predictions of the hydrodynamic pressure and deformations of the horizontal plates impacting with water at vertical velocities. The effects of the forward speed and compressive force which can occur at the bottom of ship ships, are investigated theoretically for the plates with different edge boundary conditions. The critical values of the forward speed and longitudinal compression are discussed regarding the plates with various longitudinal lengths.  相似文献   

11.
Free vibration analysis of moderately thick rectangular FG plates on elastic foundation with various combinations of simply supported and clamped boundary conditions are studied. Winkler model is considered to describe the reaction of elastic foundation on the plate. Governing equations of motion are obtained based on the Mindlin plate theory. A semi-analytical solution is presented for the governing equations using the extended Kantorovich method together with infinite power series solution. Results are compared and validated with available results in the literature. Effects of elastic foundation, boundary conditions, material, and geometrical parameters on natural frequencies of the FG plates are investigated.  相似文献   

12.
各向异性平板开孔动应力集中问题的研究   总被引:2,自引:0,他引:2  
采用各向异性平板弯曲波动理论及摄动方法,对正交各向异性平板开孔弯曲波的散射及动应力集中问题进行了分析研究,得到了此种平板稳态弯曲波动问题的渐近形式的分析解。同时采用保角映射技术,为求解正交各向异性平板开孔弹性波的散射及动应力集中问题提供了一种统一规范的方法。  相似文献   

13.
I.1ntroductionTheaxisymmetricproblemofthreedimensionalelasticcircularplatecanbetreatedasthreedimensionalaxisymmetricproblemofelasticity.Weconsideracircularplatewithauniformthicknessh,andsetupacircumferentialcoordinates(r,o)onitsmidd1esurfacewithabscissazp…  相似文献   

14.
摘要:本文基于复变函数与保角映射法,采用平板弯曲振动精确化方程[9],对含任意形开孔平板中弹性波散射与动应力集中问题进行了研究。利用正交函数展开的方法将待解的问题归结为对一组无穷代数方程组的求解。作为算例,计算了自由边界条件下圆孔和椭圆孔的动弯矩集中系数的数值结果,并对板厚与孔径比对动弯矩分布的影响做了分析研究。结果表明:入射波数、平板厚度和椭圆偏心率等参数对动弯矩的分布都有很大的影响。在较低频率和平板较薄的情况下,基于文献[9]的方程与基于Mindlin板的动弯矩结果在数值分布上是基本一致的;在较高频率和平板较厚的情况下,基于文献[9]的方程与基于Mindlin板的动弯矩结果在数值分布计算结果相差较大。由于文献[9]给出的平板振动精确化方程是在没有任何工程假设条件下得到的,因此本文的分析计算结果更精确一些。  相似文献   

15.
Spherical plate-like structures are used in pressure vessels, spherical domes of power plants, and in many other industrial applications. For non-destructive evaluation of such spherical structures, the mechanics of elastic wave propagation in spherical curved plates must be understood. The current literature shows some valuable studies on Rayleigh surface wave propagation in isotropic solids with spherical boundaries. However, the guided wave propagation problem in an anisotropic spherical curved plate, which has not been studied before, is solved for the first time in this paper.The wave propagation, in both isotropic and anisotropic spherical curved plates, is investigated. The differential equations of motion and the stress-free boundary conditions on the inner and outer surfaces of a hollow sphere are approximately solved by a general solution technique. This solution technique was successfully utilized by the authors for solving the wave propagation problem in cylindrical plates, in their earlier works. Dispersion curves for spherical plates made of isotropic aluminum, steel, and anisotropic composite material are presented as well.  相似文献   

16.
Plate equations for a plate consisting of one elastic layer and one piezoelectric layer with an applied electric voltage have previously been derived by use of power series expansions of the field variables in the thickness coordinate. These plate equations are here evaluated by the consideration of a time harmonic 2D vibration problem with finite layers. The boundary conditions at the sides of the layers then have to be considered. Numerical comparisons of the displacement field are made with solutions from two other theories; a solution with equivalent boundary conditions for a thin piezoelectric layer applied on an elastic plate and an exact solution based on Fourier series expansions. The two approximate theories are shown to be equally good and they both yield accurate results for low frequencies and thin plates.  相似文献   

17.
In this paper, the two fundamental differential equations for bending elastic plates with three generalized displacements are transformed into a set of boundary integral equations by Green formula. Three kinds of boundary conditions on edges have been strictly derived. So this paper gives a satisfactory method of boundary element analysis for solving the problem of bending elastic plates.  相似文献   

18.
A novel asymptotic approach to the theory of non-homogeneous anisotropic plates is suggested. For the problem of linear static deformations we consider solutions, which are slowly varying in the plane of the plate in comparison to the thickness direction. A small parameter is introduced in the general equations of the theory of elasticity. According to the procedure of asymptotic splitting, the principal terms of the series expansion of the solution are determined from the conditions of solvability for the minor terms. Three-dimensional conditions of compatibility make the analysis more efficient and straightforward. We obtain the system of equations of classical Kirchhoff's plate theory, including the balance equations, compatibility conditions, elastic relations and kinematic relations between the displacements and strain measures. Subsequent analysis of the edge layer near the contour of the plate is required in order to satisfy the remaining boundary conditions of the three-dimensional problem. Matching of the asymptotic expansions of the solution in the edge layer and inside the domain provides four classical plate boundary conditions. Additional effects, like electromechanical coupling for piezoelectric plates, can easily be incorporated into the model due to the modular structure of the analysis. The results of the paper constitute a sound basis to the equations of the theory of classical plates with piezoelectric effects, and provide a trustworthy algorithm for computation of the stressed state in the three-dimensional problem. Numerical and analytical studies of a sample electromechanical problem demonstrate the asymptotic nature of the present theory.  相似文献   

19.
A global higher-order shear deformation theory is devised to obtain the governing equations of composite plates under dynamic excitation. The time-harmonic solution leads to an eigenvalue problem for the natural frequencies of plates. The eigenvalue problem for rectangular plates is converted to a set of homogenous algebraic equations using differential quadrature method. The formulation of the problem allows direct application of various boundary conditions. Therefore, rectangular plates with mixed boundary conditions are also considered. To show the validity of results, the fundamental natural frequencies of composite plates with different boundary conditions and those of isotropic plates with mixed boundary conditions are compared against the results available in the literature.  相似文献   

20.
In this paper, the problem of a rectangular plate under general self-equilibrant edge tractions is solved by the method of images. The edge tractions are decomposed into four systems. When the boundary conditions in each system are satisfied, the solution is reduced to a set of linear equations, which can be solved by the method of successive approximations. Finally, the solution is illustrated by numerical examples. The effect of truncation of the set of equations is also investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号