首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The transformation of carbon dioxide in aqueous emulsions of perfluorons in the presence of oxygen in the air results in the formation of a mixture of oxalic acid and a minor set of organic compounds C4–C8. The maximum CO2 consumption occurs in the emulsion with the C8F18: H2O vol/vol ratio of 1: 0.42 at pH 2.4; the H2C2O4 yield is 11 mol %.  相似文献   

2.
The clathrate [Zn(C6H5COO)2(H2O)2] · 2CH3COOH (I) was obtained for the first time from zinc(II) benzoate. The individuality, the unit cell parameters, and the number of “guest” molecules in complex I were determined from X-ray diffraction and derivatographic data. Its crystal structure was solved.  相似文献   

3.
[Ln(H2O)8][Cr(NCS)6] · 5H2O aqua complexes, where Ln = Er (1), Lu (2), have been found in an aqueous solution instead of binary complex salts with an organic ligand in their cation, when crystal products of the reaction between Ln(NO3)3 · 6H2O (Ln = Er, Lu), K3[Cr(NCS)6] · 4H2O, and 8-oxyquinoline (C9H7NO) were studied by X-ray diffraction. Crystals of complexes 1 and 2 are isostructural and crystallize in triclinic system, space group P\(\bar 1\), Z = 2. For complex 1: a = 9.0677(4) Å, b = 9.3115(4) Å, c = 16.9595 Å, α = 81.526(2)°, β = 86.153(2)°, γ = 83.879(2)°, V = 1406.33(10) Å3, ρcalc = 1.894 g/cm3; for complex 2: a = 9.0438(3) Å, b = 9.2880(3) Å, c = 16.9181(3) Å, α = 81.7250(10)°, β = 86.1600(10)°, γ = 83.8850(10)°, V = 1396.38(7) Å3, ρcalc = 1.926 g/cm3.  相似文献   

4.
Solubility isotherms of water–sulfonol–hydrochloric (or sulfuric) acid and water–sodium dodecyl sulfate–hydrochloric acid systems at 75°C and a water–sodium dodecyl sulfate–sulfuric acid system at 50°C are constructed. Regions of two-phase liquid equilibrium suitable for use in extraction are found. Concentration parameters for extraction are determined. The interfacial distribution of a series of metal ions with and without such additional complexing reagents as diantipyrylmethane and diantipyrylheptane is studied.  相似文献   

5.
The title compound, cobalt 4′,7-diethoxylisoflavone-3′-sulfonate([Co(H2O)6](X)2⋅8H2O, X = C19H17O4SO3) was synthesized and its structure was determined by single-crystal X-ray diffraction analysis. It crystallizes in the triclinic space group P-1 with cell parameters a = 9.026(3) Å, b = 16.431(5) Å, c = 18.195(6) Å, α = 72.289(4), β = 87.498(4), γ = 82.775(5), V = 2550.1(13) Å−3, Dc = 1.419 Mg m−3, and Z = 2. The results show that the title compound consists of one cobalt cation, six coordinated water molecules, eight lattice water molecules, and two 4′,7-diethoxylisoflavone-3′-sulfonate anions, C19H17O4SO3. Two anions have different conformations. Twelve H atoms of six coordinated water molecules, as donors, form hydrogen bonds with four oxygen atoms of sulfo-groups of two anions and eight oxygen atoms of eight lattice water molecules. In addition, π < eqid1 > ⋅ < eqid2 > π stacking interactions exist in the crystal structure, which together with hydrogen bonds lead to supramolecular formation with a three-dimensional network.  相似文献   

6.
Single crystals of Li(H3O)[UO2(C2O4)2(H2O)] · H2O (I) have been synthesized and studied by X-ray diffraction. Compound I crystallizes in the monoclinic crystal system with the unit cell parameters: a = 7.1682(10) Å, b = 29.639(6) Å, c = 6.6770(12) Å, β= 112.3(7)°, space group P 21/c, Z = 4, R = 4.36%. Structure I contains discrete mononuclear groups [UO2(C2O4)2(H2O)]2? ascribed to the crystal-chemical group AB 2 01 M1 (A = UO2 2+, B01 =C2O 4 2? , M1 = H2O), which are “cross-linked” by the lithium ions into infinite layers {Li(UO2)(C2O4)2(H2O)2}? perpendicular to [010]. The hydroxonium ions are located between adjacent uranium-containing layers. A hydrogen bond system involving water molecules, oxalate ions, and hydroxonium combines the anionic layers into a three-dimensional framework.  相似文献   

7.
Synthesis, X-ray diffraction, IR and luminescence spectroscopic studies of the monohydrate of pentachloroantimonate(III) of doubly protonated ciprofloxacin (C17H19N3O3F)SbCl5 · H2O (I) were performed. The structure of I is formed by SbCl6 octahedra combined into polymeric chains [SbCl5] n 2n? through common vertices, ciprofloxacinium cations (CfH3)2+, and water molecules linked by hydrogen bonds. CfH is protonated at the carbonyl oxygen atom and the terminal nitrogen atom of the piperazinyl group. The electronic and geometric aspects determining the luminescence properties of I and of related compounds are discussed.  相似文献   

8.
Single crystals of CuCl · C6H4N3(OC3H5)(I) are synthesized by ac electrochemical method from Cu(II) chloride and 1-allyloxybenzotriazole in ethanol solution and their unit cell parameters are determined: space group P21/a a=11.583(4) , b=11.443(7) , c=8.620(4) , =108.77(3)°, V=1082(2) 3, R(F)=0.0366, R w (F)=0.0396 for 1095 reflections. In the structure of -complex I, inorganic fragment Cu2Cl2 forms centrocymmetric parallelogram. A molecule of 1-allyloxybenzotriazole acts as a bridge, which is bonded to the Cu atoms of two inorganic dimers through the C=C bond of the allyl group and to the N atom of a triazole ring. Owing to this bridging function, the ligand molecules form zigzag organometallic layers. The trigonal-pyramidal coordination sphere of a metal atom includes two Cl atoms and the C=C group. The structural motif of complex I significantly differs from that of the previously studied 2CuCl · C6H4N3(OC3H5) and resembles the motif of a bromide analog Cu2Br2 · [C6H4N3(OC3H5)]2.__________Translated from Koordinatsionnaya Khimiya, Vol. 31, No. 5, 2005, pp. 364–369.Original Russian Text Copyright © 2005 by Goreshnik, Myskiv.  相似文献   

9.
[Cd(NTO)4Cd(H2O)6] •4H2O was synthesized by mixing the aqueous solution of 3-nitro-1, 2,4-triazol-5-one (NTO) and cadmium carbonate. The single crystal structure was determined by a four-circle X-ray diffractometer. The crystal is monoclinic, space group C2/c with crystal parameters of a = 2.1229(3) nm, b = 0.6261(8) nm, = 2.1165(3) nm, β= 90.602 (3)°, V= 2.977(6) nm3, Z = 4, Dc = 2.055 g • cm-3, μ = 15.45 cm-1 and F(000) = 1824. 2523 observable independent reflections with F04σ(F0) were used for the determination and refinement of the crystal structure. Lorentz-polarization and absorption correction were applied. The final R is 0.0282 and wR = 0.0792. The analytical results show that the Cd+2 has two kinds of coordinate bonds in one crystal. One Cd+2 coordinates with 4 NTO anions and another coordinates with 6 water molecules to form a binucleate complex with a structure of tetrahedron and tetragonal bipyramid, respectively. By using SCF-PM3-MO method, the electron structure of cadmium complex of NTO has been calculated. The analysis of the calculated results shows that when [Cd(NTO)4Cd(H2O)6] • 4H2O is heated, the crystallization waters will be dissociated first and the ligand waters second and NO2 group has priority of leaving when NTO is decomposed. Analysis of the energy level and composition of localized molecular orbitals indicates that both the two Cd2+ bond to the coordinating atom with 5s  相似文献   

10.
The solubility in a ternary fullerenol-d (C60(OH)22–24)–SmCl3–H2O system at 25°C is studied via isothermal saturation in ampules. The solubility diagram is shown to be a simple eutonic one that consists of two branches corresponding to the crystallization of fullerenol-d (C60(OH)22–24 · 30H2O) and samarium(III) chloride SmCl3 · 6H2O crystallohydrates and contains one nonvariant eutonic point corresponding to saturation with both crystallohydrates. The long branch of C60(OH)22–24 · 30H2O crystallization shows the effect of fullerenol-d salting out of saturated solutions; in contrast, the short branch of SmCl3 · 6H2O crystallization shows the pronounced salting-in effect of samarium(III) chloride.  相似文献   

11.
The co-saturation line for the solid phases NaCl(s) and MgCl2 · 6H2O(s) in aqueous solution has been measured by a phase equilibrium at various temperatures. It was found that the Y b (Y b = w(NaCl)/(w(NaCl) + w(MgCl2))) value of the co-saturation line increase with increasing temperature. A new recrystallization approach has been suggested for the purification of MgCl2 · 6H2O(s) containing quite amount of impurity NaCl, i.e., dissolving the crude sample at low temperatures, followed by evaporating and phase separating at high temperatures. Applying the proposed approach a crude MgCl2 · 6H2O(s) sample can be purified to the level of Y b = 0.17% by only one crystallization process.  相似文献   

12.
Sol-gel method was used to synthesize nanosize powders in the LaPO4–YPO4–(H2O) and LaPO4–HoPO4–(H2O) systems. Dense ceramic samples with high microhardness (up to 25 GPa) were formed from these powders by sintering at temperatures of up to 1600°C. The isomorphic capacity of the monoclinic LaPO4 matrix for the second component (yttrium or holmium) simulating radioactive nuclides of the actinide-rare-earth fraction was found to be high. The composites are stable in aqueous solutions, which is indicated by the low concentration of lanthanum and yttrium ions during leaching test (~10–7 g L–1). The results obtained in the study can be used to develop new high-efficiency ceramic matrices for solidification of the actinide-rare-earth fraction of liquid wastes formed in processing of the spent nuclear fuel.  相似文献   

13.
A new compound containing the tetraphenylphosphonium cation and the nickel(III) bisdicarbollyl anion, [(C6H5)4P][Ni(B9C2H11)2]·CCl4, was synthesized and investigated by XRD at room temperature (295 K). Crystal data: C29H42B18PCl4Ni, M = 816.69, monoclinic, space group P2/c; unit cell parameters a = 13.5873(6) Å, b = 7.1475(2) Å, c = 20.7829(8) Å, β = 94.4595(13)°, V = 2012.2(2) Å3, Z = 2, d calc = 1.348 g/cm3. The structure was solved by direct and Fourier methods and refined by the full-matrix least squares method in an anisotropic (isotropic for H) approximation to the final R 1 = 0.0466 for 3055 I hkl ≥ 2σ I of 23,655 reflections collected and 5618 independent I hkl (Bruker X8 APEX diffractometer, λMoK α).  相似文献   

14.
Single crystals of Mg pivalate hydrate, Mg(H2O)6(Piv)2 · 3H2O (HPiv = (CH3)3CCOOH) are synthesized and their structure is determined by X-ray diffraction method. The crystals are rhombic: a = 10.917(2) Å, b = 12.625(2) Å, c = 31.394(8) Å, Z = 8, space group Pbca, R 1 = 0.0525. The Mg atom has octahedral surrounding of the O atoms of water molecules (Mg-O 2.044–2.137 Å). The cationic chains of [Mg(H2O)6] 2+ lie in the voids of doubled network anionic layers of [(H2O)3(Piv)2] ∞∞ 2? . Inside the layer, the pivalate anions alternate with water molecules in the xy plane, being bonded to them by hydrogen bonds. The cationic chains and the anionic layers are united into layered packs by hydrogen bonds between coordinated water molecules and pivalate anions and between coordinated and crystal hydrate water molecules.  相似文献   

15.
A complex of neodymium perchloric acid coordinated with L-glutamic acid and imidazole, [Nd(Glu)(H2O)5(Im)3](ClO4)6·2H2O was synthesized and characterized by IR and elements analysis for the first time. The thermodynamic properties of the complex were studied with an automatic adiabatic calorimeter and differential scanning calorimetry (DSC). Glass transition and phase transition were discovered at 221.83 and 245.45 K, respectively. The glass transition was interpreted as a freezing-in phenomenon of the reorientational motion of ClO4 ions and the phase transition was attributed to the orientational order/disorder process of ClO4 ions. The heat capacities of the complex were measured with the automatic adiabatic calorimeter and the thermodynamic functions [H T-H 298.15] and [S T-S 298.15] were derived in the temperature range from 80 to 390 K with temperature interval of 5 K. Thermal decomposition behavior of the complex in nitrogen atmosphere was studied by thermogravimetric (TG) analysis and differential scanning calorimetry (DSC).  相似文献   

16.
The crystal structure of complex [Mg(H2O)6][VO(edta)] · 3.5H2O (I) was determined by X-ray diffraction study. The crystals are monoclinic, a = 6.779 Å, b = 13.373(6) Å, c = 25.054 Å, β = 96.55°, Z = 4, space group P21. The unit cell contains two independent [VO(edta)]2? anions, two independent [Mg(H2O)6]2+ cations, and seven crystal-water molecules. The coordination polyhedron of each vanadium atom is formed by five donor atoms of the edta ligand (2N + 3O) (V(1)-N(1), 2.278 Å; V(1)-N(2), 2.149 Å; V(2)-N(3), 2.301 Å; V(2)-N(4), 2.165 Å; V-O(acet), 2.00 ± 0.02 Å) and the oxygen atom of the oxo group (V-O, 1.60 ± 0.01 Å). The edta ligands and the vanadium atom form three glycinate rings: two R-type rings and one G-type ring (one acetate branch remains free), as well as an E-type ring with an asymmetric gauche configuration. The [Mg(H2O)6] cations are slightly distorted octahedra (Mg-O, 2.013–2.132 Å, the OMgO angles are 86.6°–94.2°). The H2O molecules form a bifurcate system of H-bonds. The crystals of compound I belong to OD-type structures with an incomplete ordering of layers.  相似文献   

17.
The structure of the salt Cs[Gd(H2O)4Re6Te8(CN)6]·4H2O (space group P-1, a = 9.436(5) Å, b = 12.365(7) Å, c = 15.187(8)Å, α = 89.104(10)°, β = 86.996(10)°, γ = 82.304(9)°) has been established by single crystal XRD. The structure of the compound features layers involving Gd3+ cations bound to cluster anions [Re6Te8(CN)6]4? through cyanide groups. The interlayer space contains cesium cations and crystallization water molecules.  相似文献   

18.
Synthesis and X-ray diffraction study of [UO2CrO4(C5NH5COO)] · H2O crystals were performed. The compound crystallizes in the monoclinic system with the unit cell parameters a = 7.5025(3) Å, b = 11.5188(6) Å, c = 13.0518(6) Å, β = 97.877(4)°, V = 1117.29(9) Å3, space group P21/n, Z = 4, R = 0.0263. The structure is formed by three [UO2CrO4(C5NH5COO)] layers parallel to (10\(\bar 1\)). The coordination polyhedron of uranium atoms is a pentagonal bipyramid, whose apices are occupied by oxygen atoms of uranyl, three chromate groups, and two molecules of isonicotinic acid. Crystal chemical formula of the [UO2CrO4(C5NH5COO)] layer can be represented as AT3B2, where A = UO 2 2+ , T3 = CrO 4 2? , and B2 = C5NH5COO molecules. The isonicotinic acid molecules are in the form of zwitterions.  相似文献   

19.
Single crystal X-ray diffraction study of glycine phosphite C2H5NO2·H3PO3 was performed (monoclinic, space group P21/c, a = 7.401(3) Å, b = 8.465(3) Å, c = 9.737(3) Å; β = 100.73(5)°, Z = 4). It has been found that one of hydrogen atoms is located at the centre of symmetry forming two strong hydrogen bonds to yield H4P2O 6 ?2 dimers, while another hydrogen atom is statistically disordered over two positions and organizes the dimers into an infinite corrugated chain. The ordering of this hydrogen atom position and/or displacement of the other one from the centre of symmetry will lead to the loss of symmetry centre and lowering of the point group symmetry from C2h to piezo-active group C2 or C s .  相似文献   

20.
Solid-liquid equilibria in the quaternary systems KCl–MgCl2–SrCl2–H2O and NaCl–KCl–SrCl2–H2O at 348 K were measured by the isothermal solution saturation method. The composition of the equilibrium solid phase, solubilities of salts, and densities of saturated solution in the two systems were determined. Phase diagrams, water content diagrams and solution density diagrams of quaternary systems were plotted according to experimental data. The phase diagram of the quaternary system NaCl–KCl–SrCl2–H2O has one invariant point, three univariant curves as the boundary of NaCl, KCl and SrCl2 · 2H2O. This phase diagrams were simple co-saturation type without complex salt and solid solution. For the quaternary system KCl–MgCl2–SrCl2–H2O, one complex salt KCl · MgCl2 · 6H2O (Car) had been found in this system, consisted of five univariant curves, two invariant points and four crystallization regions of MgCl2 · 6H2O (Bis), KCl, SrCl2 · 2H2O and KCl · MgCl2 · 6H2O. And the densities transformation rules were simply discussed. Simultaneously, the solubilities and densities data in invariant point of the quaternary system NaCl–KCl–SrCl2–H2O had been compared with the experimental data of previous researchers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号