首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Novel PdII and PtII complexes of substituted o-hydroxyacetophenone-glycine have been synthesized, and characterized by conductivity measurements, i.r., electronic and 1H-n.m.r. spectra. The spectral data indicate that the ligands are monobasic bidentate, coordinating through imino nitrogen and the carboxylate group. A four coordinate square planar configuration has been proposed for all the complexes. The ligands, as well as their PdII and PtII complexes, exhibit potent cytotoxic activity against Ehrlich ascites tumour cells in vitro, but appear to be more active in vivo. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

2.
The synthesis in one‐pot reactions and structural characterization of six new tri‐n‐butyltin(IV) derivatives of Schiff bases are reported. The compounds are derived from a condensation reaction between l ‐alanine, l ‐valine, l ‐isoleucine, l ‐methionine, l ‐phenylalanine or l ‐tryptophan and 3,5‐di‐tert‐butyl‐2‐hydroxybenzaldehyde. Characterization was completed using elemental analysis, infrared spectroscopy, mass spectrometry, one‐ and two‐dimensional solution NMR (1H, 13C and 119Sn) as well as solid‐state 119Sn NMR. In addition, the crystal structures of three of the compounds were confirmed using single‐crystal X‐ray diffraction. Although five‐coordinated and polymeric in the solid state, the tin compounds are four‐coordinated and monomeric in solution. The coordination environment around the triorganotin units comprises three carbon atoms and two oxygen atoms from two ligands in a trigonal bipyramidal geometry. The anti‐proliferative effect of these compounds on the cervical carcinoma cell lines HeLa, CaSki and ViBo was screened in vitro, the compounds showing cytotoxic activity against all three strains and null or low cytotoxic activity (necrotic) as well. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
New nickel(II) and copper(II) complexes with unsymmetrical Schiff bases derived from aromatic 2-hydroxy aldehydes were synthesized and characterized by elemental analyses, melting points, 1H-NMR, magnetic susceptibility, thermogravimetric analysis, differential scanning calorimetry (DSC), infrared (IR), and electronic spectral measurements. Comparison of IR spectra of the Schiff bases and their metal complexes indicated that the Schiff bases are tetradentate, coordinated via the two azomethine nitrogens and the two phenolic oxygens. Magnetic moments and electronic spectral data confirm square-planar geometry for the complexes. Thermal studies reveal a general decomposition pattern, whereby the complexes decomposed partially in a single step due to loss of part of the organic moiety. A single endothermic profile, corresponding to melting point, was observed from the DSC of all complexes, except those whose ligand contained the nitro group, which decomposed exothermally without melting. The Schiff bases and their complexes were screened in vitro against 10 human pathogenic bacteria. The metal(II) complexes exhibited higher antibacterial activity than their corresponding Schiff bases.  相似文献   

4.
Complexes of the type [Ru(CO)(EPh3)(B)(L)] (E = P or As; B = PPh3, AsPh3, py or pip; L = dianion of the Schiff bases derived from the condensation of salicyloyl hydrazide with acetone, ethyl methyl ketone and salicylaldehyde have been synthesised by the reaction of equimolar amounts of [RuHCl(CO)(EPh3)2(B)] and Schiff bases in benzene. The resulting complexes have been characterized by analytical and spectral (i.r., electronic, n.m.r.) data. The arrangements of Ph3P groups around the Ru metal was determined from 31P-n.m.r. spectra. An octahedral structure has been assigned to all the new complexes. All the complexes exhibit catalytic activity for the oxidation of benzyl alcohol and cyclohexanol in the presence of N-methylmorpholine-N-oxide as co-oxidant.  相似文献   

5.
New metal based triazoles (1–12) have been synthesized by the interaction of novel Schiff base ligands (L1–L3) with the Co(II), Ni(II), Cu(II) and Zn(II) metal ions. The Schiff base ligands and their all metal(II) complexes have been thoroughly characterized using various physical, analytical and spectroscopic techniques. In vitro bacterial and fungal inhibition studies were carried out to examine the antibacterial and antifungal profile of the Schiff bases in comparison to their metal(II) complexes against two Gram‐positive, four Gram‐negative and six fungal strains. The bioactivity data showed the metal(II) complexes to have more potent antibacterial and antifungal activity than their uncomplexed parent Schiff bases against one or more bacterial and fungal species. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
A new Schiff base ligand named (E)‐2‐(((3‐aminophenyl)imino)methyl)phenol (HL) was prepared through condensation reaction of m‐phenylenediamine and 2‐hydroxybenzaldehyde in 1:1 molar ratio. The new ligand was characterized by elemental analysis and spectral techniques. The coordination behavior of a series of transition metal ions named Cr (III), Mn (II), Fe (III), Co (II), Ni (II), Cu (II), Zn (II) and Cd (II) with the newly prepared Schiff base ligand (HL) is reported. The nature of bonding and the stereochemistry of the complexes have been deduced from elemental analyses, IR, UV–Vis, 1H NMR, mass, electronic spectra, magnetic susceptibility and conductivity measurements and further their thermal stability was confirmed by thermogravimetric analysis (TG). From IR spectra, it was observed that the ligand is a neutral tridentate ligand coordinates to the metal ions through protonated phenolic oxygen, azomethine nitrogen and nitrogen atom of NH2 group. The existence, the number and the position of the water molecules was studied by thermal analysis. The molecular structures of the Schiff base ligand (HL) and its metal complexes were optimized theoretically and the quantum chemical parameters were calculated. The synthesized ligand and its complexes were screened for antimicrobial activities against bacterial species (Staphylococcus aureus and Bacillis subtilis, (gram positive bacteria)), (Salmonella SP., Escherichia coli and Pseudomonas aeruginosa, (gram negative bacteria)) and fungi (Aspergillus fumigatus and Candida albicans). The complexes were found to possess high biological activities against different organisms. Molecular docking was used to predict the efficiency of binding between Schiff base ligand (HL) and both receptors of Escherichia coli (3 T88) and Staphylococcus aureus (3Q8U). The receptor of Escherichia coli (3 T88) showed best interaction with Schiff base ligand (HL) compared to receptor of Staphylococcus aureu (3Q8U).  相似文献   

7.
The synthesis of a new Schiff base derived from 2-hydroxy-5-chloroacetophenone and 4-amino-5-mercapto-3-methyl-1,2,4-triazole and its coordination compounds with Ti(III), VO(IV), Cr(III), Mn(III), Fe(III), Zr(IV), MoO2(VI), and UO2(VI) are described. The ligand and the complexes have been characterized on the basis of analytical, electrical conductance, molecular weight, IR and electronic spectra, magnetic susceptibility measurements, and thermogravimetric analysis. The ligand acts as a dibasic tridentate molecule. Antibacterial activities of the ligand and its metal complexes have been determined by screening the compounds against E. coli, S. typhi, P. aeruginosa, and S. aureus. The solid state de electrical conductivity of the ligand and its complexes have been measured over 313–403 K, and the complexes were found to be of semiconducting nature. The article was submitted by the authors in English.  相似文献   

8.
Neutral tetradentate chelate complexes of CuII, NiII, CoII, MnII, ZnII and VOII have been prepared in EtOH using Schiff bases derived from acetoacetanilido-4-aminoantipyrine and 2-aminophenol/2-aminothiophenol. Microanalytical data, magnetic susceptibility, i.r., u.v.–vis., 1H-n.m.r. and e.s.r. spectral techniques were used to confirm the structures of the chelates. Electronic absorption and i.r. spectra of the complexes suggest a square-planar geometry around the central metal ion, except for VOII and MnII complexes which have square-pyramidal and octahedral geometry respectively. The cyclic voltammetric data for the CuII complexes in MeCN show two waves for copper(II) copper(III) and copper(II) copper(I) couples, whereas the VOII complexes in MeCN show two waves for vanadium(IV) vanadium(V) and vanadium(IV) vanadium(III) couples. The e.s.r. spectra of the CuII, VOII and MnII complexes were recorded in DMSO solution and their salient features reported. The in vitro antimicrobial activity of the investigated compounds was tested against the microorganisms such as Salmonella typhi, Staphylococcus aureus, Klebsiella pneumoniae, Bacillus subtilis, Shigella flexneri, Pseudomonas aeruginosa, Aspergillus niger and Rhizoctonia bataicola. Most of the metal chelates have higher antimicrobial activity than the free ligands.  相似文献   

9.
Two eight-coordinate Zr(IV) complexes of tetradentate Schiff base ligands, bis(3-ethoxysalicylidene)-4,5-dimethyl-1,2-phenylenediamine (H2L) and bis(3-ethoxysalicylidene)-2,2-dimethyl-1,3-propanediamine (H2L′), were prepared from Zr(acac)4 in refluxing methanol. The complexes were characterized by physico-chemical and spectroscopic methods. Also, their solid-state structures were determined by single-crystal X-ray diffraction. The crystal structure data showed a tetradentate mode of coordination for both Schiff bases, through N2O2 donor sets. The geometries of the complexes were dodecahedral and square antiprismatic for Zr(L)2 and Zr(L′)2, respectively. The complexes were screened in vitro against various microbes, revealing their antimicrobial activity.  相似文献   

10.
We report the biological activity of the new Schiff base ligand H2L (H2L = 6,6′-((1E,11E)-5,8-dioxa-2,11-diazadodeca-1,11-diene-1,12-diyl)bis(2,4-dichlorophenol)), its derived metal(II) complexes [Cu(L)] (1), [Co(L)] (2), [Ni(L)] (3) and [Zn(L)] (4), along with their structural characterizations by using various analytical and spectroscopic techniques. Electrochemical investigations showed that all of these Cu(II), Co(II) and Ni(II) complexes were reversibly reducible. Although the change of the number of unpaired electrons are different of the metal cations, they have an effect on the redox potentials of the Co(II)/(I), Ni(II)/(I) and Cu(II)/(I) couples. The 1H NMR and FTIR data concluded that the Schiff base ligand H2L acts as a hexadentate ligand coordinating with metal(II) ions through the oxygen atoms of the (COC), phenolic (COH) groups and nitrogen atom of the azomethine (CHN) group. UV-Visible absorption spectra studies clearly revealed the octahedral geometry of the prepared metal(II) complexes. Complexes 1 and 4 were found to be efficient in bringing about antimicrobial activities. The proposed mechanism of their antimicrobial activities has been discussed. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay showed the remarkable cytotoxicity of complex 1 (IC50 = 17 ± 1.3 μg/mL) on human breast cancer MCF-7 cells than Schiff base ligand H2L and complexes 2–4. Moreover, AO/EB staining assay revealed cell death due to apoptosis in MCF-7 cells and the generation of ROS by the Schiff base ligand H2L and its derived metal(II) complexes 1–4 may be a possible cause for their cytotoxic activity.  相似文献   

11.
A Schiff base 1-((3-nitrophenylimino)methyl)naphthalen-2-olate (HL) and its two novel complexes with Zn(II) and Co(II) metals were successfully synthesized and characterized by FTIR, 1H NMR, 13C NMR, elemental analysis, magnetic susceptibility, TGA and EIS-MS. Crystal of Schiff base was also characterized by X-ray analysis and experimental parameters were found in line with the theoretical parameters. Quantum mechanical approach was also used to compare structural and calculated parameters and to ensure the geometry of metal complexes. The photometric behaviors of all the synthesized compounds were investigated in a wide pH range using BR buffers. Appearance of isosbestic point suggested the existence of Schiff base molecules in different tautomeric forms. Binding of synthesized complexes with calf thymus DNA was explored by photometric and voltammetric titrations and binding constants were calculated. The results indicated that ligand and its metal complexes bind to DNA by intercalation mode. Docking studies indicate their binding possibilities with topoisomerase II. Moreover, all these prepared compounds were screened for enzyme inhibition, antibacterial, cytotoxic and in vivo antidiabetic activities and found active against one or other activity. This effort just provides preliminary data for some biological properties and which can act as foundation stone for their application in drug development.  相似文献   

12.
A series of five new copper(II) macrocyclic complexes have been synthesized by template condensation. The bonding and stereochemistry of the complexes have been characterized by elemental analysis, molar conductance, magnetic susceptibility, IR, UV-visible, EPR spectral studies and electrochemical properties. g-Values are calculated for all of the complexes in polycrystalline form as well as in DMSO solution. The magnetic and spectral data indicate square planar geometry for all the complexes. Cyclic voltammograms for all the complexes are similar and involve two quasi-reversible redox processes. Cu(II)Cu(II)<=>Cu(II)Cu(I)<=>Cu(I)Cu(I). Their biological properties have also been studied. The macrocyclic complexes show more anti-bacterial than controlled one. The anti-bacterial activities of the compounds were tested against Streptococcus fecalis and Escherichia coli with different concentrations.  相似文献   

13.
Complexes of Co(II), Ni(II) and Cu(II) with the Schiff base (LH) derived from ceftazidime and salicylaldehyde were synthesized. The proposed structures of the new metal complexes based on the results of elemental analyses, molar conductivity, IR, DRUV and 1H NMR spectra, effective magnetic moment and thermal analysis were discussed. The surface morphology of Schiff base and metal complexes was studied by SEM. The composition of the metal complexes was ML2, where L is the deprotonated Schiff base ligand and M = Co(II), Ni(II) and Cu(II). IR spectral data indicated the Schiff base ligand being bidentately coordinated to the metallic ions with N and O atoms from azomethine and phenolic groups. All the complexes have square-planar geometry and are nonelectrolytes. The thermal analysis recorded that TG, DTG, DTA and DSC experiments confirmed the assigned composition and gave information about the thermal stability of complexes in dynamic air atmosphere. Theoretical investigation of the molecular structure of Schiff base ligand and its complexes was studied using programs dedicated to chemical modeling and quantomolecular calculation of chemical properties. The newly synthesized complexes were tested for in vitro antibacterial activity against selected Gram-negative and Gram-positive bacterial strains, and they exhibited an antibacterial activity superior to that of the Schiff base ligand.  相似文献   

14.
Schiff base metal complexes derived from 2-thiophenecarboxylidine-4-anisidine, 3,4-dihydroxy-5-nitrobenzylidine-2-amino-5-methylthiazole and 3,4-dihydroxy-5-nitrobenzylidine-4-chloroaniline have been synthesized and characterized by elemental analysis, IR, UV?CVis, molar conductance and thermal analyses. The complexes are coloured and stable in air at room temperature. The complexes exhibit coordination number to be 4 and 6. The thermal behaviour of metal complexes shows that the hydrated complexes lose water molecules of hydration in the first and then is immediately followed by decomposition of ligand molecules in the subsequent steps.  相似文献   

15.
A novel Schiff base, 3-(((1H-1,2,4-triazol-3-yl)imino)methyl)-4H-chromen-4-one (L) was synthesized and used as ligand for the synthesis of Co(II), Ni(II), Cu(II), Zn(II) and Pd(II) complexes. The structural characterization of the ligand and its metal complexes was determined by using various physicochemical and spectroscopic methods. The IR data show that the Schiff base ligand acts as a bidentate donor coordinating through the oxygen atom of the chromone and nitrogen atom of the imine group. Based on all spectral data, tetrahedral geometry has been proposed for all the metal complexes except Cu(II) and Pd(II) complexes. However, square-planar geometry has been proposed for Cu(II) and Pd(II) complexes. DNA binding interaction of the ligand and its metal complexes was investigated by using UV–visible absorption, fluorescence and molecular docking studies. The binding constants were in the order of 104 M?1 suggesting good binding affinity towards CT-DNA. The DNA cleavage activity of the synthesized compounds was investigated by using agarose gel electrophoresis. In vitro antimicrobial activity of the synthesized compounds were screened against two gram-positive bacteria (Bacillus subtilis, Staphylococcus aureu) and two gram-negative bacteria (Escherichia coli, Proteus vulgaris) and one fungi strain Candida albicans using disc diffusion method. Antioxidant activity was carried out by DPPH radical scavenging method. In vitro anti-proliferative activity of the ligand and its metal complexes was also carried on the HEK-293, HeLa, IMR-32 and MCF-7 cancer cell lines using MTT assay.  相似文献   

16.
Metal complexes derived from 2,6-pyridinedicarboxaldehydebis(p-hydroxyphenylimine); L1, 2,6-pyridinedicarboxaldehydebis (o-hydroxyphenylimine); L2, are reported and characterized based on elemental analyses, IR, solid reflectance, magnetic moment, molar conductance and thermal analysis (TGA). The complexes are found to have the formulae [MX2(L1 or L2)] x nH2O, where M=Fe(II), Co(II), Ni(II), Cu(II) and Zn(II), X=Cl in case of Fe(II), Co(II), Ni(II), Cu(II) complexes and Br in case of Zn(II) complexes and n=0-2.5. The molar conductance data reveal that the chelates are non-electrolytes. IR spectra show that the Schiff bases are coordinated to the metal ions in a terdentate manner with NNN donor sites of the pyridine-N and two azomethine-N. From the magnetic and solid reflectance spectra, it is found that the geometrical structure of these complexes are trigonal bipyramidal (in case of Co(II), Ni(II), Cu(II) and Zn(II) complexes) and octahedral (in case of Fe(II) complexes). The thermal behaviour of these chelates shows that the hydrated complexes losses water molecules of hydration in the first step followed immediately by decomposition of the coordinated water, anions and ligands (L1 and L2) in the subsequent steps. The activation thermodynamic parameters, such as, E*, DeltaH*, DeltaS* and DeltaG* are calculated from the TG curves using Coats-Redfern method. The synthesized ligands, in comparison to their metal complexes also were screened for their antibacterial activity against bacterial species, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Fungi (Candida). The activity data show that the metal complexes to be more potent/antibacterial than the parent organic ligands against one or more bacterial species.  相似文献   

17.
A novel Schiff base ligand, namely 2,2′‐((1E,1′E)‐(1,3‐phenylenebis(azanylylidene))bis(methanylylidene))diphenol (H2L), was synthesized by condensation of m‐phenylenediamine and 2‐hydroxybenzaldehyde (in 1:2 ratio). Series of complexes were obtained from the reaction of La(III), Er(III) and Yb(III) chlorides with H2L. The ligand and complexes were characterized using elemental analysis, infrared, 1H NMR, UV–visible and mass spectroscopies, magnetic susceptibility and conductivity measurements and thermal analysis. Infrared and 1H NMR spectra indicated the coordination of the azomethine nitrogens and deprotonated phenolic oxygen atoms in a tetradentate manner (ONNO). The thermal behaviour of the complexes was studied from ambient temperature to 1000°C. The complexes were found to have water molecules of hydration and coordinated water molecules. The complexes were found to possess high biological activities against various organisms compared to the free ligand (Gram‐positive bacteria Staphylococcus aureus and Bacillus subtilis, Gram‐negative bacteria Salmonella sp., Escherichia coli and Pseudomonas aeruginosa and fungi Aspergillus fumigatus and Candida albicans). The more effective and probable binding modes between H2L with different active sites of colon cancer (PDB code: 2hq6) and lung cancer (PDB code: 1x2j) receptors were investigated using molecular docking studies.  相似文献   

18.
A novel bi‐nucleating Schiff base ligand, 6,6′‐(((1E,1′E)‐thiophene‐2,5‐diylbis (methaneylylidene))bis (azaneylylidene))bis (3,4‐dimethylaniline), and five binuclear M (II) complexes were synthesized. The bi‐nucleating Schiff base ligand and its metal complexes were characterized using various physicochemical techniques, e.g. elemental analyses, spectroscopic methods, conductivity and magnetic moment measurements. The low molar conductance of the complexes in dimethylsulfoxide shows their non‐electrolytic nature. The antibacterial activities were screened against pathogenic bacteria (Staphylococcus aureus, Escherichia coli, Pseudomonas putida and Bacillus subtilis). The antifungal activity was screened against Aspergillus niger, Aspergillus flavus and Rhizoctonia bataicola. The antimicrobial activity data showed that the metal complexes are more potent than the parent Schiff base ligand against microorganisms. The antioxidant activities of the synthesized compounds were investigated through scavenging activity against 2,2‐diphenyl‐2‐picrylhydrazyl, superoxide anion, hydroxyl and 2,2′‐ azinobis (3‐ethylbenzothiazoline‐6‐sulfonic acid) radicals. The complexes have superior radical scavenging activity than the free ligand and the scavenging effects of the Cu (II) complex are stronger than those of the other complexes. DNA binding studies were performed using electronic spectroscopy, fluorometric competition studies and viscosity measurements. The data indicated that there is a marked enhancement in biocidal activity of the ligand under similar experimental conditions because of coordination with metal ions.  相似文献   

19.
In this study, two novel Schiff base ligands (L1 and L2) derived from condensation of methyl 2-amino-6-methyl-4,5,6,7-tetrahydrothieno[2,3-c]pyridine-3-carboxylate and methyl 2-amino-6-phenyl-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carboxylate, both starting matter with 5-bromo-salicylaldehyde, and their Zn(II) and Ni(II) metal complexes have been prepared using a molar ratio of ligand:metal as 1:1 except the Ru(II) complexes 1:0.5. The structures of the obtained ligands and their metal complexes were characterized by elemental analysis, FT-IR, 1H NMR, 13C NMR, UV–vis, thermal analysis methods, mass spectrometry, and magnetic susceptibility measurements. Antioxidant and antiradical activity of Schiff base ligands and their metal complexes were been evaluated in vitro tests. Antioxidant activities of metal complexes generally were more effectives than free Schiff bases. 1c and 2c were used as catalysts for the transfer hydrogenation (TH) of ketones. 1c, 2c complexes were found to be efficient catalyst for transfer hydrogenation reactions.  相似文献   

20.
The ligands, 1-acetylferrocenehydrazinecarboxamide (HL1) and 1-acetylferrocenehydrazinecarbothioamide (HL2), and their Ni(II) and Co(II) complexes were synthesized. The properties of the synthesized compounds were determined by the elemental and spectroscopic analyses. Ni(II) and Co(II) acetates interact with the ligands at the molar ratios 1 : 1 and 1 : 2 to give coloured products. The complexes have octahedral geometry. The ligands are coordinated to Co(II) and Ni(II) centers via the azomethine nitrogen and thiolic sulfur /enolic oxygen atom. The ligands and their Co(II) and Ni(II) complexes were screened for antibacterial and antifungal activities. The Co(II) and Ni(II) complexes show enhanced inhibitory activity as compared to their parent ligands. The DNA cleavage activity of the Co(II) and Ni(II) complexes was determined by gel electrophoresis. It was shown that the complexes have better cleavage activity than the ligands. The antioxidant activity of the complexes was also evaluated and used to examine their scavenging ability on hydrogen peroxide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号