首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study, a chiral stability-indicating CE assay was developed for the stability evaluation of tramadol (TR) enantiomers in commercial tablets using maltodextrin as chiral selector. To investigate the stability-indicating power of the analytical method as well as stability evaluation of TR enantiomers, active pharmaceutical ingredient and TR tablets were subjected to photolysis, heat, oxidation and hydrolysis to conduct stress testing. Best separation for the TR enantiomers was achieved on an uncoated fused-silica capillary at 20 °C using borate buffer (50 mM, pH 10.2) containing 10% m/v maltodextrin. All determinations were performed by a UV detector at 214 nm. A constant voltage of 20 kV was applied to obtain the separation. The range of quantitation for both enantiomers was 5-100 μg/mL (R>0.996). Intra- and inter-day RSD (n=6) were less than 10%. The percent relevant errors were obtained to be less than 4.0 for both enantiomers. The limits of quantitation and detection for both enantiomers were 5 and 1.5 μg/mL, respectively. Degradation products resulting from the stress studies were the same for both enantiomers and did not interfere with the detection of the enantiomers.  相似文献   

2.
Electro membrane extraction as a new microextraction method was applied for the extraction of amlodipine (AM) enantiomers from biological samples. During the extraction time of 15 min, AM enantiomers migrated from a 3 mL sample solution, through a supported liquid membrane into a 20 μL acceptor solution presented inside the lumen of the hollow fiber. The driving force of the extraction was 200 V potential, with the negative electrode in the acceptor solution and the positive electrode in the sample solution. 2-Nitro phenyl octylether was used as the supported liquid membrane. Using 10 mM HCl as background electrolyte in the sample and acceptor solution, enrichment up to 124 times was achieved. Then, the extract was analyzed using CD modified CE method for separation of AM enantiomers. Best results were achieved using a phosphate running buffer (100 mM, pH 2.0) containing 5 mM hydroxypropyl-α-CD. The range of quantitation for both enantiomers was 10-500 ng/mL. Intra- and interday RSD (n=6) were less than 14%. The limits of quantitation and detection for both enantiomers were 10 and 3 ng/mL respectively. Finally, this procedure was applied to determine the concentration of AM enantiomers in plasma and urine samples.  相似文献   

3.
A simple enantioselective method based on CE using CD as chiral selector was developed and validated for the determination of isradipine (IRD) enantiomers in a pharmaceutical formulation and for the determination of IRD enantiomers in degradation studies. After optimization, the best results were obtained using 15 mM borate buffer at pH 9.3 and sulfobutyl ether-β-cyclodextrin (2.5%, w/v) as chiral selector. The applied voltage was +30 kV, and the sample injection was performed in the hydrodynamic mode. All analyses were carried out in a fused-silica uncoated capillary with an id of 50 μm and total length of 60.0 cm. Under these conditions, a complete separation between IRD enantiomers was achieved in less than 7 min. Linearity was obtained in the range 50-300 μg/mL for both enantiomers (r≥0.9978). The RSD (%) and relative errors (%) obtained in precision and accuracy studies (intra-day and inter-day) were lower than 5%. Therefore, this method was found to be appropriate for controlling pharmaceutical formulations containing IRD enantiomers and the assay was considered to be stability indicating. The drug was subjected to oxidation, hydrolysis and photolysis. In all stress conditions the drug presented considerable degradation when compared with a fresh sample (zero time).  相似文献   

4.
A simple, sensitive and low‐cost method using CE coupled with glucose‐β‐CD interaction assisted ACN stacking technique has been developed for quantification of trace amlodipine in dog plasma. The plasma samples were extracted with methyl tert‐butyl ether. The separation was performed at 25°C in a 31.2 cm × 75 μm fused‐silica capillary with an applied voltage of 15 kV. The BGE was composed of 6.25 mM borate/25 mM phosphate (pH 2.5) and 5 mg/mL glucose‐β‐CD. The detection wavelength was 200 nm. Because CD could diminish the interaction between drugs and matrix, and derivation groups of CD play an important role in separation performance, the effects of β‐CD, and its derivatives on the separation were studied at several concentrations (0, 2.5, 5.0, 10.0 mg/mL). In this study, organic solvent field‐amplified sample stacking technique in combination with glucose‐β‐CD enhanced the sensitivity about 60–70 folds and glucose‐β‐CD could effectively improve the peak shape. All the validation data, such as accuracy, precision extraction recovery, and stability, were within the required limits. The calibration curve was linear for amlodipine from 1 to 200 ng/mL. The method developed was successfully applied to the pharmacokinetic studies of amlodipine besylate in beagle dogs.  相似文献   

5.
A simple and rapid LC method was developed and validated for simultaneous estimation of nebivolol and amlodipine in a bi-layer tablet formulation. Efficient chromatographic separation was achieved on (USP L10) Hypersil BDS cyano, 5 μm, 250 mm × 4.6 mm column with simple mobile phase composition delivered in isocratic mode. The method had requisite accuracy, selectivity, sensitivity, robustness and precision to assay nebivolol and amlodipine in pharmaceutical dosage form. Degradation products resulting from the stress studies did not interfere with the detection of nebivolol and amlodipine, these peaks remained pure and thus proved to be stability indicating. The mass balance of the stressed sample was in the range 99.0–100.2% for amlodipine and 99.3–100.3% for nebivolol.  相似文献   

6.
The study describes development and subsequent validation of a stability indicating reverse-phase HPLC method for the simultaneous estimation of atorvastatin (ATV), and amlodipine (AML) from their combination drug product. The proposed RP-HPLC method utilizes a Lichrospher 100 C18, 5 microm, 250 mm x 4.0 mm i.d. column, at ambient temperature, optimum mobile phase consisted of acetonitrile and 50 mM potassium dihydrogen phosphate buffer (60 : 40, v/v), apparent pH adjusted to 3+/-0.1 with 10% phosphoric acid solution, effluent flow rate monitored at 1.0 ml/min, and UV detection at 254 nm. ATV, AML, and their combination drug product were exposed to thermal, photolytic, hydrolytic, and oxidative stress conditions, and the stressed samples were analyzed by proposed method. The method was applied for the in vitro dissolution of marketed combination drug products. The described method was linear over the range of 1-90 microg/ml and 1-80 microg/ml for ATV and AML, respectively. The mean recoveries were 99.76 and 98.12% for ATV and AML, respectively. The intermediate precision data obtained under different experimental setup, the calculated value of coefficient of variation (CV, %) was found to be less than critical value. The limit of detection for ATV and AML were found to be 0.4 and 0.6 mug/ml, respectively and the limit of quantification was 1.0 microg/ml for both drugs. The average percentage drug release was found to be more than 70% within 30 min for both drugs. Chromatographic peak purity data of ATV and AML indicated no co-eluting peaks with the main peaks of drugs which demonstrated the specificity of assay method for their estimation in presence of degradation products. The proposed method can be useful in the quality control and in vitro dissolution of combination drug products.  相似文献   

7.
A sensitive, simple and reproducible method was developed for preconcentration and determination of trimipramine (TPM) enantiomers in biological samples using electromembrane extraction combined with cyclodextrin‐modified capillary electrophoresis (CE). During the extraction, TPM enantiomers migrated from a 5 mL sample solution through a thin layer of 2‐nitrophenyl octyl ether NPOE immobilized in the pores of a hollow fiber, and into a 20 μL acidic aqueous acceptor phase presented inside the lumen of the fiber. A Box–Behnken design and the response surface methodology (RSM) were used for the optimization of different variables on extraction efficiency. Optimized extraction conditions were: NPOE as supported liquid membrane, inter‐electrode distance of 5 mm, stirring rate of 1000 rpm, 51 V potential difference, 34 min as the extraction time, acceptor phase pH 1.0 and donor phase pH 4.5. Then, the extract was analyzed using optimized cyclodextrin (CD)‐modified CE method for the separation of TPM enantiomers. Best results were achieved using 100 mM phosphate running buffer (pH 2.0) containing 10 mM α‐CD as the chiral selector, applied voltage of 18 kV and 20°C. The range of quantitation for both enantiomers was 20–500 ng/mL. The method was very reproducible so that intra‐ and interday RSDs (n=6) were <6%. The limits of quantitation and detection for both enantiomers were 20 and 7 ng/mL, respectively. Finally, this method was successfully applied to determine the concentration of TPM enantiomers in plasma and urine samples without any pre‐treatment.  相似文献   

8.
A rapid and stereospecific HPLC micromethod to quantify flurbiprofen enantiomers was developed. Both flurbiprofen enantiomers and indomethacin, used as internal standard, were extracted with methylene chloride from 100 microL of acidified plasma. The resolution of the R- and S-forms was performed on a bonded vancomycin chiral stationary phase (Chirobiotic V) with 20% of tetrahydrofuran in ammonium nitrate (100 mM, pH 5) as mobile phase. Calibration curves were linear in the range 0.5-10 microg/mL for both enantiomers. A good accuracy (< or = 5%) was obtained for all quality controls, with intra-day and inter-day variation coefficients equal or less than 7.7%. Recovery of both enantiomers was found in the range 77.4-86.3%. The lower limit of quantitation was 0.25 microg/mL for both enantiomers, without interference of endogenous components. This validated micromethod has been successfully applied for quantifying R- flurbiprofen and S- flurbiprofen in rat plasma.  相似文献   

9.
NP-HPLC分离氨氯地平对映体及其含量测定   总被引:1,自引:0,他引:1  
建立直接拆分氨氯地平对映体的HPLC方法,并用于其含量测定.以CHIRALPAK AD-H为固定相,在正相条件下考察了流动相组成、流速、柱温等因素对氨氯地平对映体分离度的影响.在优化条件下,分别测定了氨氯地平对映体的含量.实验表明,以正己烷-乙醇-二乙胺(95 : 5 : 0.1,体积比)为流动相,流速 1.0 Ml/min,检测波长 360 nm,柱温 30 ℃,氨氯地平对映体的质量浓度均在0.01 ~0.06 g/L范围内线性关系良好(Rr=0.998 3,Rs=0.998 7).高、中、低3个浓度平均回收率(n=3)分别为99%、101%、101%,相对标准偏差依次为0.76%、0.68%、0.98%.该分析方法准确可靠、快速、简单、重复性好,可用于左旋氨氯地平工业化制备中动态拆分过程的跟踪分析及产品质量控制. 含量.实验表明,以正己烷-乙醇-二乙胺(95 : 5 : 0.1,体积比)为流动相,流速 1.0 Ml/min,检测波长 360 nm,柱温 30 ℃,氨氯地平对映体的质量浓度均在0.01 ~0.06 g/L范围内线性关系良好(r_R=0.998 3,r_S=0.998 7).高、中、低3个浓度平均 收率(n=3)分别为99%、101%、101%,相对标准偏差依次为0.76%、0.68%、0.98%.该分析方法准确可靠、快速、简单、重复性好,  相似文献   

10.
A simple stereoselective high performance liquid chromatographic method was developed for the determination of the in vitro transport of the enantiomers of nateglinide (N-(trans-4-isopropylcyclohexyl-carbonyl)-phenylalanine) in the rat intestine using a Chiralcel OJ-RH column (150 x 4.0 mm, 5 microm). The effects of the mobile phase composition, pH, the flow rate, and the temperature on the chromatographic separation were investigated. The enantioseparation was achieved at 33 degrees C using a mobile phase containing 100 mM potassium dihydrogen phosphate, pH 2.5, and ACN (32:68 v/v) delivered at a flow rate of 1 mL/min. The analytes were monitored at 210 nm and linearity (r >0.99) was obtained for a concentration range of 0.5-50 microg/mL. The LOD and LOQ were 0.2 and 0.5 microg/mL for the R-enantiomer and 0.2 and 0.8 microg/mL for the S-enantiomer, respectively. Both, the intra- and interday accuracy and precision of the calibration curves were determined. The method was successfully applied to estimate the in vitro passage of the enantiomers and the racemate of nateglinide in duodenum, jejunum, and ileum of rats. Generally, higher concentrations of nateglinide and the S-enantiomer were observed when the racemate was administered compared to administration of the individual enantiomers of nateglinide.  相似文献   

11.
A simple, precise, and accurate isocratic reversed-phase (RP) stability-indicating column high-performance liquid chromatographic (HPLC) assay method was developed and validated for determination of nebivolol in solid pharmaceutical dosage forms. Isocratic RP-HPLC separation was achieved on a Phenomenex Luna C8 (2) column (250 mm x 4.6 mm id, 5 microm particle size) using mobile phase composed of acetonitrile-pH 3.5 phosphate buffer (35 + 65, v/v) at a flow rate of 1.0 mL/min, and detection was performed at 280 nm using a photodiode array detector. The drug was subjected to oxidation, hydrolysis, photolysis, and heat to apply stress conditions. The method was validated for specificity, linearity, precision, accuracy, robustness, and solution stability. The method was linear in the drug concentration range of 40-160 microg/mL with a correlation coefficient of 0.9999. The repeatability relative standard deviation (RSD) for 6 samples was 0.69%, and the intermediate precision (RSD) for 6 samples was 1.39%. The accuracy (recovery) was between 98.57 and 99.55%. Degradation products produced as a result of stress studies did not interfere with detection of nebivolol, and the assay can thus be considered stability-indicating.  相似文献   

12.
Qi L  Liu M  Guo Z  Xie M  Qiu C  Chen Y 《Electrophoresis》2007,28(22):4150-4155
The aim of this work was to assay seasoning D- or L-aromatic amino acids (AAs) in rice-brewed suspensions, Laozao in Chinese, by chiral ligand-exchange CE with UV detection and Zn(II) complex as a chiral selecting system. Resolution and peak retention were found to be parallel to the basicity of the AA chiral ligands, and basic L-Arg was known to work the best at pH 8.20 compared with L-Lys and other AA ligands. Baseline separation of DL-aromatic AAs and partially separation of some FMOC-labeled nonaromatic AAs have been achieved using a running buffer of 5 mM ammonium acetate, 100 mM boric acid, 3 mM ZnSO(4), and 6 mM L-Arg at pH 8.20. The aromatic amino acids in four brands of Laozao were measured in a range of 0.25-20 microg/mL for Typ, 1.00-120 microg/mL for Phe, and 2.50-200 microg/mL for Tyr, with linear regression coefficient all over 0.999. The LOD (S/N=3) was 0.15 microg/mL for Typ, 0.50 microg/mL for Phe, and 1.25 microg/mL for Tyr. The recovery of the method determined by spiking with the supernates of Laozao as background was 94.0-112.9%. The RSDs of migration time and peak area measured from six injections of tyrosine were 0.2 and 2.7%, respectively, for run-to-run, and 1.6 and 3.2%, respectively for day-to-day. Interestingly, there were only L-Trp, D-Tyr, and L-Tyr found in the assayed four brands of Laozao. They may serve as an index to recognize the brand of Laozao.  相似文献   

13.
毛细管电泳法手性拆分合成药物氨氯地平及其中间体   总被引:6,自引:0,他引:6  
李保会  杨更亮  王德先  张哲峰  陈义 《色谱》2002,20(4):338-340
 建立了毛细管电泳手性拆分氨氯地平药物中间体的方法 ,并同时拆分了氨氯地平。考察了不同手性拆分试剂对手性选择性的影响 ,其中羧甲基 β 环糊精 (CM β CD)能够给出满意的拆分结果。在以CM β CD为手性拆分试剂的基础上 ,还考察了各种因素诸如流动相的pH值、环糊精的浓度以及电压对分离的影响。最佳拆分条件为 :30mmol/L磷酸盐 +5 0mmol/LCM β CD(pH 6 12 )。在此条件下 ,药物中间体及氨氯地平的分离度分别为 1 5 5和 1 73,结果令人满意。  相似文献   

14.
Dimethyl-beta-cyclodextrin (DM-beta-CD) modified capillary electrophoresis has been developed for chiral separation of ephedrine and related compounds, such as (+/-)-norephedrine, (+/-)-N-methylephedrine, (+/-)-ephedrine and (+)-pseudoephedrine. The influence of some crucial parameters such as buffer concentration, pH value, DM-beta-CD concentration, applied voltage and separation temperature on the separation was investigated. Under the optimum conditions, i.e. 40 mM DM-beta-CD in 75 mM Tris (pH 2.5) as the running electrolyte, separation voltage +25 kV and temperature 25 degrees C, a satisfactory separation of the enantiomers was accomplished. The detection limits (S/N = 3) ranged from 65 to 161 ng/mL and the linear range was 0.15 to 101.0 microg/mL for pressure injection. The present method was successfully applied for the analysis of a series of drugs such as anti-tussive, the drug for rheum, the drug for rhinitis and a Chinese traditional herbal medicine, Ephedrae herba (Ma-Huang in Chinese). The recoveries of ephedrine and related compounds in real samples ranged from 97.6 to 103.5%. This method is useful in the simple and rapid analysis of ephedrine derivatives in marketed products.  相似文献   

15.
A new and accurate HPLC method using sulfobutylether-beta-cyclodextrin (SBE-beta-CD) as chiral mobile phase additive (CMPA) was developed and validated for the determination of R-(+)pantoprazole in S-(-)pantoprazole. The influences of type and concentration of CD, ACN content and buffer pH of mobile phase on the resolution and retention of enantiomers were investigated. A baseline resolution of pantoprazole enantiomers was achieved on a Spherigel C18 column (150 mm x 4.6 mm, 5 microm) using ACN and 10 mM phosphate buffer (pH 2.5) containing 10 mM SBE-beta-CD (15:85 v/v) as mobile phase with a flow rate of 0.9 mL/min at 20 degrees C. The detection wavelength was set at 290 nm. The method was extensively validated in terms of accuracy, precision and linearity according to the International Conference on Harmonisation (ICH) guidelines and proved to be robust. The LOD and LOQ for R-(+)pantoprazole were 0.2 and 0.5 microg/mL, respectively, with 5 microL injection volume. A good linear relationship was obtained in the concentration range of 0.5-6.0 microg/mL with r(2) >0.999 for R-(+)pantoprazole. The percentage recovery of the R-(+)pantoprazole ranged from 92.1 to 101.2 in bulk drug of S-(-)pantoprazole. The method is capable of determining a minimum limit of 0.05% w/w of R-enantiomer in S-(-)pantoprazole bulk samples.  相似文献   

16.
A capillary electrophoretic method for separation of the enantiomers of amlodipine in the serum of hypertension patients has been established and validated. The two enantiomers were separated in a fused-silica capillary with phosphate running buffer (75 mmol L?1, pH 2.5) containing 15 mmol L?1 hydroxypropyl-β-cyclodextrin (HP-β-CD). The effects on the separation of buffer pH and concentration, separation potential, and concentration of HP-β-CD were investigated. The range of quantitation for both enantiomers was 2.0–16.0 μg mL?1. Intra-day and inter-day relative standard deviation (RSD; n = 5) was <10%. The limits of detection (LOD) and quantification (LOQ) of the amlodipine enantiomers, at 214 nm, were approximately 0.5 and 0.7 μg mL?1, respectively (S/N = 3 and 10, respectively; 5-s injection). Recovery was always >85%. Results from enantiomer separation and quantification showed that concentrations of the enantiomers of amlodipine in serum from an elderly patient were higher than in serum from a young patient administered the same dose. The method was useful for determining the concentration of the enantiomers of amlodipine in hypertension patient serum and for monitoring the transition behavior of the enantiomers in humans. The method proved suitable for application to the separation of the enantiomers of amlodipine and analysis of clinical samples.  相似文献   

17.
In this work, a novel polysaccharide‐based chiral stationary phase, cellulose tris(4‐chloro‐3‐methylphenylcarbamate), also called Sepapak 4 has been evaluated for the chiral separation of amlodipine (AML) and its two impurities. AML is a powerful vasodilatator drug used for the treatment of hypertension. Capillary columns of 100 μm id packed with the chiral stationary phase were used for both nano‐LC and CEC experiments. The optimization of the mobile phase composed of ACN/water, (90:10, v/v) containing 15 mM ammonium borate pH 10.0 in nano‐LC allowed the chiral separation of AML and the two impurities, but not in a single run. With the purpose to obtain the separation of the three pairs of enantiomers simultaneously, CEC analyses were performed in the same conditions achieving better enantioresolution and higher separation efficiencies for each compound. To fully resolve the mixture of six enantiomers, parameters such as buffer pH and concentration sample injection have been then investigated. A mixture of ACN/water (90:10, v/v) containing 5 mM ammonium borate buffer pH 9.0 enabled the complete separation of the three couples of enantiomers in less than 30 min. The optimized CEC method was therefore validated and applied to the analysis of pharmaceutical formulation declared to contain only AML racemate.  相似文献   

18.
An assay for the simultaneous determination of the enantiomers of hydroxymebendazole (OH-MBZ) and hydroxyaminomebendazole (OH-AMBZ) together with aminomebendazole (AMBZ) in human plasma is described for the first time. It is based upon liquid-liquid extraction at alkaline pH from 0.5 mL plasma followed by analysis of the reconstituted extract by CE with reversed polarity in the presence of a 50 mM, pH 4.2 acetate buffer containing 15 mg/mL sulfated beta-CD as chiral selector. For all compounds, detection limits are between 0.01 and 0.04 microg/mL, and intraday and interday precisions evaluated from peak area ratios are <6.9 and <8.5%, respectively. Analysis of 39 samples of echinoccocosis patients undergoing pharmacotherapy with mebendazole (MBZ) revealed that the ketoreduction of MBZ and AMBZ is highly stereoselective. One enantiomer of each metabolite (firstly detected peak in both cases) could only be detected. The CE data revealed that OH-MBZ (mean: 0.715 microg/mL) is the major metabolite followed by AMBZ (mean: 0.165 microg/mL) and OH-AMBZ (mean: 0.055 microg/mL) whereas the MBZ plasma levels (mean: 0.096 microg/mL, levels determined by HPLC) were between those of AMBZ and OH-AMBZ.  相似文献   

19.
ABSTRACT: BACKGROUND: A simple, specific, and fast stability indicating reverse phase liquid chromatographic method was established for instantaneous determination of moxifloxacin and prednisolone in bulk drugs and pharmaceutical formulations. RESULTS: Optimum chromatographic separations among the moxifloxacin, prednisolone and stressinduced degradation products were achieved within 10 minutes by use of BDS Hypersil C8 column (250 X 4.6 mm, 5 mum) as stationary phase with mobile phase consisted of a mixture of phosphate buffer (18 mM) containing 0.1% (v/v) triethylamine, at pH 2.8 (adjusted with dilute phosphoric acid) and methanol (38:62 v/v) at a flow rate of 1.5 mL min-1. Detection was performed at 254 nm using diode array detector. The method was validated in accordance with ICH guidelines. Response was a linear function of concentrations over the range of 20-80 mug mL-1 for moxifloxacin (r2 [greater than or equal to] 0.998) and 40-160 mug mL-1 for prednisolone (r2 [greater than or equal to] 0.998). The method was resulted in good separation of both the analytes and degradation products with acceptable tailing and resolution. The peak purity index for both the analytes after all types of stress conditions was [greater than or equal to] 0.9999 indicated a complete separation of both the analyte peaks from degradation products. The method can therefore, be regarded as stabilityindicating. CONCLUSIONS: The developed method can be applied successfully for simultaneous determination of moxifloxacin and prednisolone in pharmaceutical formulations and their stability studies.  相似文献   

20.
A sulfated beta-cyclodextrin (sulfated beta-CD)-mediated capillary electrophoresis method is described for the enantioseparation of cetirizine using achiral cefazolin as an internal standard. The enantioseparation of the drug was performed in a borate buffer (5 mM, pH 8.7) with 1% sulfated beta-CD (w/v) as chiral selector at 10 kV. Several parameters affecting the separation were studied, including the pH and the concentration of borate buffer and chiral selector. Under optimized conditions, a baseline separation of two enantiomers was achieved in less than 7 min. Using cefazolin as an internal standard (IS), the linear range of the method for the determination of levocetirizine was over 1.0 to 50.0 microg/mL; the detection limit (signal-to-noise ratio = 3) of levocetirizine was 0.5 microg/mL. The method allowed the enantioseparation of cetirizine in bulk samples and enantiomeric purity evaluation of levocetirizine (R-enantiomer) in pharmaceutical tablets (Xyzal), and it was also found to be suitable for enantioseparation in human plasma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号