首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 512 毫秒
1.
Sterically similar palladium dicarbene complexes have been synthesized that comprise permethylated dicarbene ligands which bind the metal center either in a normal coordination mode via C2 or abnormally via C4. Due to the strong structural analogy of the complexes, differences in reactivity patterns may be attributed to the distinct electronic impact of normal versus abnormal carbene bonding, while stereoelectronic effects are negligible. Unique reactivity patterns have been identified for the abnormal carbene complexes, specifically upon reaction with Lewis acids and in oxidative addition‐reductive elimination sequences. These reactivities as well as analytical investigations using X‐ray diffraction and X‐ray photoelectron spectroscopy indicate that the C4 bonding mode increases the electron density at the metal center substantially, classifying such C4‐bound carbene ligands amongst the most basic neutral donors known thus far. A direct application of this enhanced electron density at the metal center is demonstrated by the catalytic H2 activation with abnormal carbene complexes under mild conditions, leading to a catalytic process for the hydrogenation of olefins.  相似文献   

2.
Reaction of imidazole derivatives with 2,3-di(bromomethyl)pyrazine results in the formation of the new pyrazine-bridged diimidazolium salts 1-8. These salts proved to be valuable precursors for dinuclear complexes with mixed NHC/pyrazine ligands. Two of the pyrazine-bridged diimidazolium salts 3·H2O and 8·2H2O have been characterized by X-ray diffraction. Furthermore, the first catalytic studies with mixtures of palladium acetate and the imidazolium salts have been carried out. The in situ prepared palladium complexes derived from the diimidazolium salts 1-8 exhibit a modest catalytic activity in Heck-type coupling reactions between 4-bromo benzaldehyde and styrene or n-butyl acrylate.  相似文献   

3.
Oxidative addition of pyridyl-functionalised 4-iodoimidazolium salts to palladium(0) gives catalytically active complexes in which the N-heterocyclic carbene is bound to the palladium(II) centre in a non-classical bonding mode via C(4).  相似文献   

4.
The reactions of [PdCl2(NCPh)2] in a 1:1 ratio with the bis(amidopyridine) ligands LL=C6H3(5-R)(1,3-CONH-3-C5H4N)2 with R=H (1a) or R=t-Bu (1b) give the corresponding neutral dipalladium(II) macrocycles trans,trans-[Pd2Cl4(mu-LL)2], 2a and 2b, which crystallize from dimethylformamide with one or two solvent molecules as macrocycle guests. The reaction of [PdCl2(NCPh)2] with LL in a 1:2 ratio gave the cationic lantern complex [Pd2(mu-LL)4]Cl4, 3c (LL=1b), and the reaction in the presence of AgO2CCF3 gave the corresponding trifluoroacetate salts [Pd2(mu-LL)4](CF3CO2)4, 3a (LL=1a) and 3b (LL=1b). These lantern complexes exhibit a remarkable host-guest chemistry, as they can encapsulate cations, anions, and water molecules by interaction of the guest with either the electrophilic NH or the nucleophilic C=O substituents of the amide groups, which can be directed toward the center of the lantern through easy conformational change. The structures of several of these host-guest complexes were determined, and it was found that the cavity size and shape vary according to the ligand conformation, with Pd...Pd separations in the range from 9.45 to 11.95 A. Supramolecular ordering of the lanterns was observed in the solid state, through either hydrogen bonding or secondary bonding to the cationic palladium(II) centers. The selective inclusion by the lantern complexes of alkali metal ions in the sequence Na+ > K+ > Li+ was observed by ESI-MS.  相似文献   

5.
Rhodation of trimethylene-bridged diimidazolium salts induces the intramolecular activation of an alkane-type C-H bond and yields mono- and dimetallic complexes containing a formally monoanionic C,C,C-tridentate dicarbene ligand bound to each rhodium centre. Mechanistic investigation of the C(alkyl)-H bond activation revealed a significant rate enhancement when the carbene ligands are bound to the rhodium centre via C4 (instantaneous activation) as compared to C2-bound carbene homologues (activation incomplete after 2 days). The slow C-H activation in normal C2-bound carbene complexes allowed intermediates to be isolated and suggests a critical role of acetate in mediating the bond activation process. Computational modelling supported by spectroscopic analyses indicate that halide dissociation as well as formation of the agostic intermediate is substantially favoured with C4-bound carbenes. It is these processes that discriminate the C4- and C2-bound systems rather than the subsequent C-H bond activation, where the computed barriers are very similar in each case. The tridentate dicarbene ligand undergoes selective H/D exchange at the C5 position of the C4-bound carbene exclusively. A mechanism has been proposed for this process, which is based on the electronic separation of the abnormal carbene ligand into a cationic N-C-N amidinium unit and a metalla-allyl type M-C-C fragment.  相似文献   

6.
The complexes [PdX2Py]2(di-NHC) (X = Br or Cl) in which di-NHC represents a di-N-heterocyclic carbene, featuring a rigid phenylene spacer between the carbene units, have been prepared from reactions of the corresponding diimidazolium halide salts with PdCl2 in pyridine. The molecular structures of three of the complexes were determined by X-ray diffraction studies. The influences of different substitutions and of the halide ligand (Br or Cl) on the structure and reactivity of the complexes have been studied. The catalytic activity of the binuclear palladium complexes was tested in the Mizoroki–Heck reaction of styrene with bromobenzene.  相似文献   

7.
The g(zz) values of ESR spectra of superoxide (O(2)(.-) complexes of metal ion salts acting as Lewis acids with different ligands and counterions were determined in acetonitrile at 143 K. The binding energies (DeltaE) of (O(2)(.-)/Lewis acid complexes have been evaluated from deviation of the g(zz) values from the free spin value. The DeltaE value is quite sensitive to the difference in the counterions and ligands of metal ion salts acting as Lewis acids. On the other hand, the fluorescence maxima of the singlet excited states of 10-methylacridone/Lewis acid complexes are red-shifted as compared with that of 10-methylacridone, and the relative emission energies (Deltahnu(f)) vary significantly depending on the Lewis acidity of metal ion salts with different counterions and ligands. The promoting effects of Lewis acids were also examined on electron transfer from cobalt(II) tetraphenylporphyrin to oxygen in acetonitrile at 298 K, which does not occur in the absence of Lewis acids under otherwise the same experimental conditions. Both DeltaE and Deltahnu(f) values are well correlated with the promoting effects of Lewis acids on the electron transfer reduction of oxygen. Such correlations indicate that DeltaE and Deltahnu(f) values can be used as quantitative measures of Lewis acidity of metal ion salts with different ligands and counterions. The Lewis acidity thus determined can also be applied to predict the promoting effects of Lewis acids on organic synthesis.  相似文献   

8.
The bis(imino)pyridine scaffold provides for the synthesis and characterization of the unique Ag(I) pincer complexes [{ArN=CPh}(2)(NPh)]Ag(+)(OTf)(-) (Ar = 2,5-(t)Bu(2)C(6)H(3); 2,6-(i)Pr(2)C(6)H(3)). The similar covalent radii of Ag(I) and In(I), prompted a bonding comparison of these species with their In(I) analogues. Coordination of toluene to the Ag center revealed the stronger Lewis acidity of the metal site in these compounds relative to In(I) analogues.  相似文献   

9.
The gelling behavior of some geminal diimidazolium salts was investigated in solvents differing in polarity and hydrogen bond donor ability. The used salts, namely the 3,3'-di-n-decyl-1,1'(1,4-phenylenedimethylene)diimidazolium dibromide [p-Xyl-(decim)(2)][Br](2) (1), the 3,3'-di-n-dodecyl-1,1'(1,4-phenylenedimethylene)diimidazolium dibromide [p-Xyl-(dodecim)(2)][Br](2) (2), and the 3,3'-di-n-dodecyl-1,1'(1,4-phenylenedimethylene)diimidazolium ditetrafluoroborate [p-Xyl-(dodecim)(2)][BF(4)](2) (3), differ in the alkyl chain length and in the anion properties, such as size, shape, and coordination ability. In all cases in which gelation process was observed, the obtained gels were characterized by gel melting temperature determination, resonance light scattering, and UV-vis measurements. On the whole, the investigation allowed to get information about both the thermodynamic stability and the features of the aggregates characterizing the soft materials at the equilibrium. Data collected by us point out that the used organic salts are able to behave as both hydro- and organogelators. In particular, bromide salts formed hydrogels in the presence of α-cyclodextrin allowing to hypothesize that the gelation process is favored by the formation of supramolecular assemblies. To verify this hypothesis, 1D and 2D (1)H NMR measurements were carried out. Both the alkyl chain length and the anion ability to reticulate the three-dimensional network proved to be determinant factors in affecting the gelation process as well as the features of the gel phases. Finally, with the future aim to use the obtained gels as reaction media, the effect of a guest molecule such as the UV-vis active probe Nile Red was studied.  相似文献   

10.
Four new palladium pincer complexes incorporating ONO type furoylhydrazone ligands have been prepared in good yields. These palladium complexes were structurally characterized by elemental analysis, infrared, 1H‐ and 13C‐NMR spectra. X‐ray single crystal analyses of Pd1–Pd4 revealed that the metal center adopted a slightly distorted square planar geometry in which the hydrazone bound the metal ion via the phenolic‐O, azomethine‐N and imidolate‐O atoms. Using these ONO pincer complexes as catalyst, excellent yields of biaryls could be obtained for coupling of arylboronic acids with aryl bromides at a low catalyst loading (0.01 mol%).  相似文献   

11.
The synthesis and structural characterization of the hexafluorophosphate salts of the substituted bis-amido molecular complexes [Co(III)(eta5-C5H4CONHC4H3N2)2]+ (1), [Co(III)(eta5-C5H4CONHCH2C5H4N)2]+ (2), [Co(III)(eta5-C5H4CON(C5H4N)2)2]+ (3), and of the amido-carboxyl complexes [Co(III)(eta5-C5H4CON(C5H4N)2)(eta5-C5H4COOH)]+ (4), and [Co(III)(eta5-C5H4CONHC2N3(C5H4N)2)(eta5-C5H4COOH)]+ (5) are reported. The pyridyl and pyrazine substituted amido ligands on the sandwich cores have been chosen because they allow both coordination to metal centres and participation in hydrogen bonding. The hydrogen bonding interactions established by the family of complexes in the solid state has been investigated. The utilization of complex 5 for the preparation of the complex of complexes[Cd(NO3)2{Co(III)(eta5-C5H4CONHC2N3(C5H4N)(C5H4NH))(eta5-C5H4COOH)}2]6+ (6) is reported as a first example of the potential of the substituted mono-and bis-amides as ligands. The isolation and structural characterization of the carbonyl chloride cation [Co(III)(eta5-C5H4COCl)2]+ (7) as its tetrachloro cobaltate anion salt is also described.  相似文献   

12.
The reaction of alpha,beta-unsaturated carbonyl compounds, a palladium(0) complex, and Lewis acids led to the formation of a new class of complexes showing a wide variety of structures with eta(2)-type and eta(3)-type coordination of the carbonyl compounds. The reaction of Pd(PhCH=CHCOCH(3))(PPh(3))(2) with BF(3).OEt(2) or B(C(6)F(5))(3) quantitatively gave palladium complexes 1a,b having BX(3)-coordinated eta(2)-enonepalladium structure, as revealed by X-ray structure analysis of the B(C(6)F(5))(3) adduct 1b. On the other hand, the reaction of Pd(PhCH=CHCHO)(PPh(3))(2) with BF(3).OEt(2) or B(C(6)F(5))(3) gave distorted zwitterionic eta(3)-allylpalladium complexes 3a,b, where the Pd-carbonyl carbon distance in 3a (2.413(4) A) is much shorter than that (2.96(1) A) in 1b. The values of the P-P coupling constant and (13)C chemical shift for carbonyl carbon are useful criteria for predicting how the eta(3)-coordination mode contributes to the structure of the enone-palladium-Lewis acid system. Molecular orbital calculations on the series of model complexes suggest that orbital overlap in the highest occupied molecular orbital between the palladium and carbonyl carbon is enlarged by coordination of the Lewis acid to the carbonyl group. Palladium-catalyzed conjugate addition of R-M (R-M = AlMe(3), AlEt(3), ZnEt(2)) and its plausible reaction path are also reported.  相似文献   

13.
The complexes formed by the interaction between a series of phosphines R-PH(2) (R = H, CH(3), c-C(3)H(5), C(6)H(5)) and AlH(3) have been investigated through the use of high-level G4 ab initio calculations. These very stable complexes behave as much stronger acids than the isolated phosphines. This dramatic acidity enhancement, which can be as high as 174 kJ mol(-1), results from a much greater stabilization of the anionic deprotonated species with respect to the neutral one, upon AlH(3) association. This effect depends quantitatively on the nature of the substituent R and is smaller for R = C(6)H(5) because of the conjugation of the P lone pair with the aromatic system. More unexpectedly, however, the phosphine-alane complexes, RPH(2):AlH(3), are more acidic than the corresponding phosphine-borane RPH(2):BH(3) analogues. This unexpected result is due to the enhanced stability of the anionic deprotonated species for complexes involving AlH(3), because the delocalization of the newly created P lone pair with the P-Al bonding density is more favorable when the Lewis acid is aluminum trihydride than when it is borane.  相似文献   

14.
Pnictine derivatives can behave as both 2e? donors (Lewis bases) and 2e? acceptors (Lewis acids). As prototypical ligands in the coordination chemistry of transition metals, amines and phosphines also form complexes with p‐block Lewis acids, including a variety of pnictogen‐centered acceptors. The inherent Lewis acidity of pnictogen centers can be enhanced by the introduction of a cationic charge, and this feature has been exploited in recent years in the development of compounds resulting from coordinate Pn–Pn and Pn–Pn′ interactions. These compounds offer the unusual opportunity for homoatomic coordinate bonding and the development of complexes that possess a lone pair of electrons at the acceptor center. This Review presents new directions in the systematic extension of coordination chemistry from the transition series into the p‐block.  相似文献   

15.
This paper contains the synthesis and characterization of the seven new benzimidazolium salts and their corresponding new palladium(II)‐NHC complexes with the general formula [PdX2(NHC)2], (NHC = N‐heterocyclic carbene, X = Cl or Br), and also their catalytic activity in direct C‐H bond arylation of 2‐substituted furan derivatives with aryl bromides and aryl chlorides. Under the optimal conditions, these palladium(II)‐NHC complexes showed the good catalytic performance for the direct C‐H bond arylation of 2‐substituted furans with (hetero)aryl bromides, and with readily available and inexpensive aryl chlorides. The C‐H bond arylation regioselectively produced C5‐arylated furans by using 1 mol% of the palladium(II)‐NHC catalysts in moderate to high yields.  相似文献   

16.
The reaction of 2‐(2‐bromoethyl)‐1,3‐dioxane with 1‐alkylbenzimidazole derivatives results in the formation of the new benzimidazolium salts (1). The reaction of Pd(OAc)2 with 1,3‐dialkylbenzimidazolium salts (1a–c) yields palladium N‐heterocyclic carbene (NHC) complexes (2a–c). All synthesized compounds were characterized by 1H NMR, 13 C NMR, IR and elemental analysis techniques which support the proposed structures. As catalysts, these new palladium complexes offer a simple and efficient methodology for the synthesis of triarylamines and secondary amines from anilines and amines and in a single step with potassium tertiary butoxide as a base. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
A variety of differently substituted 1,3,2-diazaphospholenium salts and P-halogeno-1,3,2-diazaphospholenes (X = F, Cl, Br) were synthesized, and their molecular structures, bonding situation, and Lewis acid properties were characterized by experimental (single-crystal X-ray diffraction, NMR and IR/Raman spectroscopy, MS, conductometry, titrations with Lewis bases) and computational methods. Both experimental and computational investigations confirmed that the structure and bonding in the diazaphospholenium cations of OTf and BF4 salts resembles that of neutral Arduengo carbenes and that the cations should not be described as genuinely aromatic. P-Halogenodiazaphospholenes are, in contrast to earlier assumptions, molecular species with covalent P-X bonds whose bonding situation can be expressed in terms of hyperconjugation between the six pi electrons in the C2N2 unit and the sigma*(P-X) orbital. This interaction induces a weakening of the P-X bonds, whose extent depends subtly on substituent influences and contributes fundamentally to the amazing structural similarity of ionic and covalent diazaphospholene compounds. A further consequence of this effect is the unique polarizability of the P-Cl bonds in P-chlorodiazaphospholenes, which is documented in a considerable spread of P-X distances and bond orders. Measurement of the stability constants for complexes of diazaphospholene compounds with Lewis bases confirmed the lower Lewis acidities and higher stabilities of diazaphospholenium ions as compared with nonconjugated phosphenium ions; this had been inferred from computed energies of isodesmotic halide-transfer reactions, and permitted also to determine equilibrium constants for P-Cl bond dissociation reactions. The results suggest, in accord with conductance measurements, that P-chlorodiazaphospholenes dissociate in solution only to a small extent. On the basis of these findings, the unique solvatochromatic behavior of NMR chemical shifts of these compounds was attributed to solvent-dependent P-Cl bond polarization rather than to shifts in dissociation equilibria.  相似文献   

18.
Well‐defined and air‐stable PEPPSI (Pyridine Enhanced Precatalyst Preparation Stabilization and Initiation) themed palladium bis‐N‐heterocyclic carbene complexes have been developed for the domino Sonogashira coupling/cyclization reaction of 2‐iodophenol with a variety of terminal alkynes and C‐H bond arylation of benzothiazole with aryl iodides. The PEPPSI themed palladium complexes, 2a and 2b were synthesized in good yields from the reaction of corresponding imidazolium salts with PdCl2 and K2CO3 in pyridine. The new air‐stable palladium‐NHC complexes were characterized by NMR spectroscopy, X‐ray crystallography, elemental analysis, and mass spectroscopy studies. The PEPPSI themed palladium(II) bis‐N‐heterocyclic carbene complexes 2a and 2b exhibited excellent catalytic activities for domino Sonogashira coupling/cyclization reaction of 2‐iodophenol with terminal alkynes yielding benzofuran derivatives. In addition, the palladium complexes, 2a and 2b successfully catalyzed the direct C‐H bond arylation of benzothiazole with aryl iodides as coupling partners in presence of CuI as co‐catalyst.  相似文献   

19.
A series of new palladium dinuclear species with general formula [Pd2X(mu-X)[mu-P(t)Bu2(Bph-R)]] (X = Cl, Br; Bph = biphenyl; R = H, Me, NMe2) have been prepared. The two palladium centers in these species are bridged by one of the aromatic rings of the biphenyl group present in the corresponding phosphine. The X-ray crystal structure of one of these complexes has been obtained, providing a clear picture of the bonding pattern. The stability of these dimers in solution is shown to be highly dependent on the nature of the phosphine R group and also on the bridging halide. When R = NMe2, the dimers dissociate, yielding the palladium(II) compounds PdX2[P(t)Bu2(BPh-NMe2)] (X = Cl, Br), and the X-ray crystal structure of one of them (X = Br) has shown that the biphenyl group from the phosphine interacts directly with the metal center. This interaction seems to play an important role in stabilizing the otherwise coordinatively unsaturated palladium(II) complex. In contrast, when R = H or Me, the analogous monomeric palladium(II) complexes are unstable and undergo cyclometalation to generate a palladium(II) dinuclear species in which each of the two phosphines cyclometalates with the palladium centers forming a strained four-membered ring. In addition to their unusual structures, these aryl-bridged dimers have also proven to be excellent precatalysts for the amination of aryl chlorides. To rationalize some of the experimental results, a detailed DFT computational study has been carried out and is presented herein.  相似文献   

20.
A series of relatively low-cost ionic liquids, based on the N-butyronitrile pyridinium cation [C(3)CNpy](+), designed to improve catalyst retention, have been prepared and evaluated in Suzuki and Stille coupling reactions. Depending on the nature of the anion, these salts react with palladium chloride to form [C(3)CNpy](2)[PdCl(4)] when the anion is Cl(-) and complexes of the formula [PdCl(2)(C(3)CNpy)(2)][anion](2) when the anion is PF(6)(-), BF(4)(-), or N(SO(2)CF(3))(2)(-). The solid-state structures of [C(3)CNpy]Cl and [C(3)CNpy](2)[PdCl(4)] have been established by single-crystal X-ray diffraction. The catalytic activity of these palladium complexes following immobilization in both N-butylpyridinium and nitrile-functionalized ionic liquids has been evaluated in Suzuki and Stille coupling reactions. All of the palladium complexes show good catalytic activity, but recycling and reuse is considerably superior in the nitrile-functionalized ionic liquid. Inductive coupled plasma spectroscopy reveals that the presence of the coordinating nitrile moiety in the ionic liquid leads to a significant decrease in palladium leaching relative to simple N-alkylpyridinium ionic liquids. Palladium nanoparticles have been identified as the active catalyst in the Stille reaction and were characterized using transmission electron microscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号