首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
In this paper, we report the generation of Au nanoparticles (NPs), using a pure enzyme for the reduction of AuCl4(-), with the retention of enzymatic activity in the complex. As a model system, alpha-amylase was used to readily synthesize and stabilize Au NPs in aqueous solution. Although several other enzymes were also pursued for the synthesis, it was interesting to observe that only alpha-amylase and EcoRI could produce Au NPs. Following NP synthesis, the activity of the enzyme was retained in the Au NP-alpha-amylase complex. The presence of Au NPs and alpha-amylase in the complex was established by UV-visible and FT-IR spectroscopy, X-ray diffraction (XRD) and transmission electron microscopic (TEM) measurements. Our observations suggest that the presence of free and exposed S-H groups is essential in the reduction of AuCl4(-) to Au NPs. Structural analysis of the enzymes showed that both alpha-amylase and EcoRI enzymes have free and exposed S-H groups in their native form and thus are suitable for the generation of NPs, whereas the other ones used here do not have such groups. Fortuitously, the enzymatic functional group of alpha-amylase is positioned opposite to that of the free and exposed S-H group, which makes it ideal for the production of Au NPs; binding of the enzyme to Au NPs via Au-S bond and also retention of the biological activity of the enzyme.  相似文献   

3.
We report an easy solution phase template-based method to assemble mercaptoundecanoic acid-functionalized gold nanoparticles (MUA-GNPs) along poly(ethylene oxide) (PEO) chains. Transmission electron microscopy (TEM) images show one-dimensional and two-dimensional chain-like sequences of GNPs resembling PEO chains. The progress of the assembly was monitored by the evaluation of surface plasmon resonance band of MUA-GNPs with time by UV-vis spectroscopy. The assembly process is a result of hydrogen bonding interaction between the ethereal oxygen of PEO and carboxylic acid group of MUA attached to GNPs surface, which was confirmed through FTIR spectroscopy. The interaction between PEO and MUA-GNPs was further confirmed by thermal analysis using differential scanning calorimetry.  相似文献   

4.
5.
Dry aqueous foams made of anionic surfactant (SDS) and spherical gold nanoparticles are studied by small angle X-ray scattering and by optical techniques. To obtain stable foams, the surfactant concentration is well above the critical micelle concentration. The specular reflectivity signal obtained on a very thin film (thickness 20 nm) shows that functionalized nanoparticles (17 nm typical size) are trapped within the film in the form of a single monolayer. In order to isolate the film behavior, investigations are made on a single film confined in a tube. The film thinning according to the ratio of functionalized nanoparticle and SDS micelles (1:1, 1:10, 1:100) is mainly governed by the structural arrangement of SDS micelles. In thick films, nanoparticles tend to form aggregates that disappear during drainage. In particular self-organization of nanoparticles (with different surface charge) inside the film is not detected.  相似文献   

6.
7.
Design of nanohybrid systems possessing several ruthenium trisbipyridine (Ru(bpy)(3)(2+)) chromophores on the surface of gold nanoparticles, by adopting a place exchange reaction, was reported and their photophysical properties were tuned by varying the density of chromophores. The charge shift between the excited and ground-state Ru(bpy)(3)(2+) chromophores was reported for the first time, leading to the formation of Ru(bpy)(3)(+) and Ru(bpy)(3)(3+). Electron-transfer products were not observed on decreasing the concentration of Ru(bpy)(3)(2+) functionalized on Au nanoparticles or in a saturated solution of unbound chromophores. The close proximity of the chromophores on periphery of the gold core may lead to an electron transfer reaction and the products sustained for several nanoseconds before undergoing recombination, probably due to the stabilizing effect of the polar ethylene glycol moieties embedded between the chromophore groups.  相似文献   

8.
This paper describes the synthesis, structural analysis, and investigations of the optical and electrochemical properties of some gold nanoparticles (AuNPs) which consist of a triarylamine ligand shell attached to small gold cores (Au-Tara). The triarylamine chromophores were attached to small 4-bromobenzenethiol covered gold nanoparticles (ca. 2 nm in diameter) by Sonogashira reaction. This procedure yields triarylamine redox centers attached via π-conjugated bridging units of different length to the gold core. The AuNPs were analyzed with (1)H NMR spectroscopy, diffusion ordered NMR spectroscopy (DOSY), thermogravimetric analysis (TGA), and scanning transmission electron microscopy (STEM). Cyclic voltammetry (CV) technique was used to determine the composition of the redox active particles via the Randles-Sevcik equation. The optical and electrochemical properties of the Au-Tara nanoparticles and of their corresponding unbound ligands (Ref) were investigated with UV/vis/NIR absorption spectroscopy, Osteryoung square wave voltammetry (OSWV), and spectroelectrochemistry (SEC). These data show that the assembling of triarylamines in the vicinity of a gold nanoparticle can change the optical and electrochemical properties of the triarylamine redox chromophores depending on the kind and length of the bridging unit. This is due to gold core-chromophore and chromophore-chromophore interactions.  相似文献   

9.
The organization of metal and semiconductor nanoparticles to form micro- and nanostructured assemblies is currently of tremendous interest. This communication reports on the utilization of DNA molecules as positioning elements for generating microstructured surface architecture from gold nanoparticles. Citrate-passivated 40 nm gold colloids were modified by chemisorptive coupling with a 5′-thiol-derivatized DNA oligomer. The nucleic acid was used as a molecular handle for the specific immobilization on solid supports, previously functionalized with capture DNA oligomers, complementary to the nanoparticle-bound DNA. As a consequence of the enormous specificity of nucleic acid hybridization, the DNA-directed immobilization (DDI) allows, to site-specifically target the hybrid nanoparticles to microlocations which contain the complementary oligomers. The site-selectivity of the surface adsorption is demonstrated by immobilizing the gold colloids on a DNA microarray on a glass cover slide. Moreover, scanning force microscopy (SFM) analysis, used to characterize the intermediate steps of the DDI on a gold substrate, provided initial insights into the specificity and efficiency of this technique. The application of the DDI to fabricate complex colloidal micro- and nanostructures is anticipated. Received: 26 July 2000/Accepted: 5 October 2000  相似文献   

10.
We report the first quantitative analysis of the oligonucleotide binding thermodynamics for DNA functionalized gold nanoparticle probes and compare our findings to molecular fluorophore probes on a sequence-for-sequence basis. With proper design, nanoparticle probes show significantly increased binding over molecular fluorophore probes under identical conditions. This is significant because probe binding strength directly influences detection sensitivity limits.  相似文献   

11.
We have modified gold nanoparticles (AuNPs) with triazole acetamide to obtain a material for the sensitive and selective colorimetric determination of iodide. The functionalized AuNPs were prepared by a reductive single chemical step using a Cu(I)-catalyzed click reaction. The presence of iodide ions induces the aggregation of these AuNPs and results in a color change from wine-red to purple. The iodide-induced aggregation can be detected visually with bare eyes, but also by photometry. The detection limit is as low as 15 nM. The method displays excellent selectivity for iodide over other anions due to the selective interaction with the amido groups of the triazole. The method was applied to the determination of iodide in spiked lake waters.
Figure
New triazole acetamide functionalized gold nanoparticles (ATTP-AuNPs) for sensitive and selective colorimetric detection of I? were developed. ATTP-AuNPs showed excellent selectivity toward I? due to the interaction between the amide groups of ATTP and I?.  相似文献   

12.
Gold nanoparticles functionalized with self-assembled films of ferrocenylhexanethiol and mercaptoundecanoic acid (MUA) were used for the determination of ascorbic acid (AA). The modified nanoparticles (mNPs) were prepared by a combination of the modified Schifrin’s and the place-exchange methods. Well-organized films were obtained due to electrostatic attraction between the carboxy groups of MUA and cationic surface of poly(diallyldimethylammonium chloride). The mNP films are highly stable and can be exploited to fabricate an enzyme-less sensor for AA whose function is based on the highly electrocatalytic activity of ferrocene in the mNPs towards AA. The sensor was characterized by cyclic voltammetry and chronoamperometry. Under optimal conditions, the response current towards AA is proportional to its concentration in the range from 8.0 μM to 6.0 mM, with a detection limit of 0.14 μM (at a signal-to-noise ratio of 3). This work represents a simple controlled test-bed for fundamental studies on the use of self-assembled mNPs for sensor applications.  相似文献   

13.
14.
15.
Gold nanoparticles functionalized with a triarylcarbinol derivative have been used as colorimetric molecular probes for the naked-eye detection of the nerve agent simulants DCNP and DFP. The detection process is based on the compensation of charges at the surface of the nanoparticles which triggers their aggregation in solution with the resulting change in their plasmon band.  相似文献   

16.
A systematic study of the interfacial activity of polymer-coated gold nanoparticles was performed with the use of a computer-controlled four-roll mill. The nanoparticle locality within the polymeric domains (bulk or interface) was controlled by means of a mixture of polymeric ligands grafted to the gold nanoparticle core. The bulk polymers were polybutadiene (PBd) and polydimethylsiloxane (PDMS). Monoterminated PDMS and PBd ligands were synthesized on the basis of the esterification of reactive groups (such as hydroxyl or amino groups) with lipoic acid anhydride. The formation of polymer-coated nanoparticles using these lipoic acid-functionalized polymers was confirmed via transmission electron microscopy (TEM), and their interfacial activity was manifested as a reduction of the interfacial tension and in the enhanced stability of thin films (as seen via the inhibition of coalescence). The nanoparticles showed an equal, if not superior, ability to reduce the interfacial tension when compared to previous studies on the effect of insoluble surfactants; however, these particles proved not to be as effective at inhibiting coalescence as their surfactant counterpart. We suggest that this effect may be caused by an increase in the attractive van der Waals forces created by the presence of metal-core nanoparticles. Experimental measurements using the four-roll mill allow us to explore the relationship between nanoparticle concentration at the interface and interfacial tension. In particular, we have found evidence that the interface concentration can be increased relative to the equilibrium value achieved by diffusion alone, and thus the interfacial tension can be systematically reduced if the interfacial area is increased temporarily via drop deformation or breakup followed by recoalescence.  相似文献   

17.
This paper reports the findings of a detailed study of the self-assembly of gold nanoparticles at the surface of carbon nanotubes (CNTs). The study included the development of a predictive model for the interactions (charge transfer, van der Waals, osmotic, elastic, nonelastic, and covalent) between tetraoctylammonium bromide-stabilized (TOAB) gold nanoparticles and alkyl- and alkylthiol-modified multiwalled carbon nanotubes (MWCNTs). It also included the measurement of the coverage of gold nanoparticles at the surface of the above MWCNTs as a function of increasing alkyl chain length. One key finding is that it is possible to predict with a high degree of accuracy using the above model the measured coverage of gold nanoparticles adsorbed, either noncovalently or covalently, at the surface of a MWCNT. Another key finding is that, as predicted, under well-defined conditions the measured coverage of nanoparticles is very sensitive to the nature of the modified CNT surface and the contiguous environment, providing valuable insights that will underpin the rational design of functional nanoscale devices assembled from nanoparticle and CNT building blocks.  相似文献   

18.
彭章泉  汪尔康 《中国化学》2000,18(5):698-702
Nanogold colloidal solutions are prepared by the reduction of HAuClO4 with sodium citrate and sodium borohydride.4-Aminothiophenol (ATP) self-assembled monolayers (SAMs) are formed on gold(111) surface,on which gold nanopartides are immobilized and a sub-monolayer of the particles appears.This sub-monolayer of gold nanopartides is characterized with scanning tunneling microscopy (STM),and a dual energy barrier tunneling model is proposed to explain the imageability of the gold nanopartides by STM.This model can also be used to construct multiple energy barrier structure on solid/ liquid interface and to evaluate the electron transport ability of some organic monolayers with the aid of electrochemical method.  相似文献   

19.
We report on the preparation of a new class of polymer hydrogels obtained through the chemical crosslinking reaction of poly(vinyl alcohol) (PVA) and functionalized gold nanoparticles. Carboxylic group functionalized gold nanoparticles were synthesized, dispersed in a PVA matrix and allow to react with the hydroxyl groups of PVA at high temperature. FT-IR and swelling experiments carried out on the cross-linked samples confirmed that the crosslinking reaction took place. This is the first time, to our knowledge, that functionalized nanoparticles are used as chemical crosslinking agents.  相似文献   

20.
In this report, we demonstrated a novel efficient post-modification route for preparation of smart hybrid gold nanoparticles with poly(4-vinylpyridine) (P4VP) based on RAFT and click chemistry. A new azide terminated ligand was first synthesized to modify gold nanoparticles by ligand exchange reaction, and then click reaction was used to graft alkyne terminated P4VP which was prepared by RAFT onto the surface of gold nanoparticles. The functionalized hybrid gold nanoparticles were characterized by TEM, FTIR, and XPS etc. The results indicated that the P4VP was successfully grafted onto the surface of gold nanoparticles by click reaction. The surface grafting density was calculated to be about 6 chains/nm2. In addition, the hybrid gold nanoparticles showed a pH responsive phenomenon as the pH value changed around 5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号