首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of solution pH (in the range 3–9) on mixed silica-alumina suspension in the absence and presence of polyacrylic acid (PAA) was studied. The composition of the adsorbent was SiO2 (97%) and Al2O3 (3%). The turbidimetry method was applied to record changes in the stability of the investigated systems as a function of time. It was shown that the suspension without the polymer is less stable at pH 3, whereas at pH 6 and 9, the systems were stable. PAA with molecular weights 100 000 and 240 000 at pH 3 (improvement of system stability conditions) and PAA 2 000 at pH 6 (deterioration of suspension stability) have a great effect on the silica-alumina suspension stability. The stabilization-flocculation properties of polyacrylic acid are a result of a specific conformation of its chains on the solid surface where it depends on the solution pH and the polymer molecular weight.  相似文献   

2.
The influence of solution pH (in the range 3–9) on the adsorption of polyacrylic acid (PAA) on the mixed silica–alumina surface (SA-3: SiO2 97 %–Al2O3 3 % and SA-96: SiO2 4 %–Al2O3 96 %) was investigated. The following methods were applied in experiments: spectrophotometry, viscosimetry, potentiometric titration, and microelectrophoresis, which enable determination of adsorbed amount of the polymer, thickness of its adsorption layers, surface charge density, and zeta potential of solid particles in the presence and absence of PAA, respectively. The obtained results indicate that rise of solution pH causes the decrease of PAA adsorption and the increase of its adsorption layer thickness on surfaces of both solids. Moreover, significantly higher adsorption of polyacrylic acid was obtained on the SA-96 surface. This is a result of more favorable electrostatic interactions occurring between the adsorbing polymer chains and the SA-96 surface and formation of a greater number of adsorbate-adsorbent connections through hydrogen bridges.  相似文献   

3.
The influence of solution pH on the structure of polyvinyl alcohol adsorption layer on the alumina surface was investigated. The spectrophotometry, viscosimetry, thermogravimetry, potentiometric titration and microelectrophoresis were applied in experiments. These methods enable determination of the following parameters: adsorbed amount of PVA, stability of suspension without and with polymer, thickness of its adsorption layers, changes in thermal characteristics of Al2O3 surface with the adsorbed polymer, surface charge density and zeta potential of solid particles in the presence and absence of PVA, respectively. All measurements were carried out in the pH range 3–9. The obtained results indicate that pH has a great influence on the conformation of PVA chains adsorbed on the alumina surface. It is due to incomplete hydrolysis of acetate groups of polyvinyl alcohol macromolecules (degree of hydrolysis 97.5%), which dissociate with the increasing pH. Moreover, the polymer adsorption on the alumina surface causes changes in the course of thermogravimetric curves. The effect of weight loss for Al2O3–PVA systems is smaller than that of Al2O3 without polymer. It is due to elimination of water molecules from the solid surface by adsorbed polymer.  相似文献   

4.
The effect of nonionic polymer adsorption on the stability of alumina (Al2O3) in the pH range 3–9 was examined. The influences of polymer type and its molecular weight, as well as solution pH, were studied. The following macromolecular substances were used: polyethylene glycol (PEG), polyethylene oxide (PEO) and polyvinyl alcohol (PVA). The spectrophotometry method was applied to obtain the stability curves (dependence of suspension absorbance vs. time). The obtained results indicate that the addition of the polymer influences alumina suspension stability. The addition of the polymer at pH 3 improves the stability conditions of investigated systems. At pH = 6 the decrease of Al2O3 suspension stability (except PEG 2 000) was obtained. On the other hand, at pH 9 the presence of polymer improves the stability properties of the alumina. The higher the molecular weight of the polymer, the more pronounced effects were observed. Moreover, adsorption of polyvinyl alcohol whose macromolecules contain ionizable acetate groups causes greater changes in alumina suspension stability in comparison to the systems containing polyethylene glycol and polyethylene oxide.  相似文献   

5.
The effect of anionic polyacrlic acid (PAA) adsorption on fumed silica (SiO2) surface on suspension stability was studied. The turbidymetry method was applied to monitor the changes in the suspension stability (using apparatus Turbiscan LabExpert with cooling module TLAb Cooler). PAA macromolecules contain dissociable carboxyl groups, therefore, all measurements were carried out at three pH values: 3, 6 and 9. Analysis of obtained transmission and backscattering curves and Turbiscan Stability Indexes (TSI) allowed determination of the most probable mechanism of the stability of the studied systems. The PAA adsorption has the greatest impact on the silica suspension stability at pH 3 (significant improvement of its stability). On the other hand, the presence of polyacrylic acid at pH 6 causes a noticeable deterioration of system stability conditions. At pH 9, polymer minimally influences the stability of SiO2 suspension.  相似文献   

6.
An influence of the molecular weight of the polymer and inorganic contaminations of zirconia on the adsorption and electrokinetic properties on ZrO2-electrolyte solution interface was studied. Two polymers were used; polyacrylic acid (PAA) and polyacrylamide (PAM). On the basis of the obtained dependencies, main factors responsible for observed changes of zeta potential and surface charge of washed and contaminated ZrO2 were determined. It was showed, that the change of ionic structure in the Stem layer depends on the number and arrangements of-COOH groups in PAA and PAM macromolecules. These groups are responsible for the conformation of polymer chains near the surface and have direct influence on the amount of the adsorbed polyelectrolyte. The inorganic ions, present on the surface of the oxide, blocking some part of active sites, making them inaccessible for adsorbing by carboxylic groups polymer chains. That makes the adsorption on the contaminated oxide lower than on the washed one. From the comparison of the determined values of the diffuse layer charge and surface charge, the main factor influencing the zeta potential changes at different pH, molecular weight and polymer concentration was determined. Also was demonstrated, that the contaminations of the solid are reason for considerable shift of pHpzc in relation to pHicpof the zirconia. Thickness of the adsorption layers and free energies of the adsorption of polyacrylic acid and polyacrylamide on the surface of ZrO2 were calculated.  相似文献   

7.
In this paper the adsorption of polyacrylic acid (MW=5000) on the hydrophobic mercury surface and on the hydrophilic -Al2O3 surface at pH=3–4 in 0.55 M sodium chloride solution was investigated. Measurements of change of the double layer capacitance by phase selective a.c. voltammetry were used for determination of the adsorption of polyacrylic acid on the mercury electrode. The same method was used for the determination of the polyacrylic acid remaining in the solution after the adsorption on hydrophilic particles (-Al2O3 particles). The results obtained for adsorption of polyacrylic acid were compared to the results of the adsorption of humic substance of similar molecular weight under similar experimental conditions. The study has shown that polyacrylic acid in acidic solution is strongly adsorbed on the mercury surface, which is comparable to the adsorption of humic substance on the mercury surface. At the same time, the adsorption/deposition of polyacrylic acid on the -Al2O3 surface is weaker compared to humic acid, indicating at a smaller degree of interaction of polyacrylic acid with aluminium ions and with hydrophilic surface.  相似文献   

8.
聚丙烯酸在纳米TiO2表面吸附行为的研究   总被引:1,自引:0,他引:1  
讨论了聚丙烯酸在纳米TiO2水悬浮体系中的吸附行为.红外光谱分析和吸附实验结果表明,纳米TiO2通过氢键吸附PAA.PAA吸附量随着浓度的升高而增大直至饱和吸附量,且分子量越大,饱和吸附量越大.pH值增大,则饱和吸附量减小.在相同条件下,表面吸附层的厚度随PAA分子量、浓度和pH值增大而增大.这是由PAA在颗粒表面构型的变化所致.吸附PAA后的纳米TiO2的表面电荷密度和ζ电位发生变化,pHiep值向低值方向移动.表面吸附自由能的计算结果说明,PAA在纳米TiO2表面的吸附是自发过程.  相似文献   

9.
设计并合成了一种以磁性纳米粒子为核,聚合物为中间层,金属有机骨架材料为外层的三层结构磁性复合材料(Fe3O4@PAA@ZIF-8)。首先利用溶剂热法制备Fe3O4纳米粒子,然后通过蒸馏沉淀聚合法在Fe3O4纳米粒子表面包覆聚丙烯酸(PAA)层,最后通过原位沉积法在PAA外部包覆ZIF-8。在对Fe3O4@PAA@ZIF-8的组成和结构进行表征的基础上,深入研究其对孔雀石绿(MG)的吸附性能。透射电子显微镜(TEM)显示Fe3O4@PAA@ZIF-8具有明显的三层结构,Fe3O4的平均粒径为117nm,PAA层厚度约为17 nm,ZIF-8层的厚度约为14 nm。Fe3O4@PAA@ZIF-8对MG的吸附量随着p H的升高而增大,吸附过程符合准二阶动力学模型和Langmuir等温吸附模...  相似文献   

10.
设计并合成了一种以磁性纳米粒子为核,聚合物为中间层,金属有机骨架材料为外层的三层结构磁性复合材料(Fe3O4@PAA@ZIF 8)。首先利用溶剂热法制备Fe3O4纳米粒子,然后通过蒸馏沉淀聚合法在Fe3O4纳米粒子表面包覆聚丙烯酸(PAA)层,最后通过原位沉积法在PAA外部包覆ZIF 8。在对Fe3O4@PAA@ZIF 8的组成和结构进行表征的基础上,深入研究其对孔雀石绿(MG)的吸附性能。透射电子显微镜(TEM)显示 Fe3O4@PAA@ZIF 8 具有明显的三层结构,Fe3O4的平均粒径为 117nm,PAA 层厚度约为 17 nm,ZIF 8层的厚度约为 14 nm。Fe3O4@PAA@ZIF 8对 MG 的吸附量随着 pH 的升高而增大,吸附过程符合准二阶动力学模型和 Langmuir等温吸附模型。此外,Fe3O4@PAA@ZIF 8还表现出良好的重复利用性能,8次循环利用后对MG(500 mg·L-1)的最大吸附量仍可达982 mg·g-1。  相似文献   

11.
The adsorption of poly(acrylic acid) (PAA) in aqueous suspension onto the surface of TiO(2) nanoparticles was investigated. FTIR spectroscopic data provided evidence in support of hydrogen bonding and chemical interaction in the case of the PAA-TiO(2) system. Adsorption isotherms demonstrated that part of the PAA initially added to the suspension was adsorbed onto the TiO(2) surface, after which there was a gradual attainment of an adsorption plateau. The adsorption density of PAA was found to increase with an increase of PAA molecular weight, while it decreased with an increase of pH. The thickness of the PAA adsorption layer was calculated based on measurements of suspension viscosities in the absence and presence of PAA. It was shown that the thickness of the adsorption layer increased with the increase of pH, PAA molecular weight, and its concentration. The surface charge density, the diffuse charge density, and the zeta potential of TiO(2) varied distinctly after PAA adsorption. The shift of pH(iep) toward a lower pH value was observed in the presence of PAA. PAA was found to stabilize the suspension of TiO(2) nanoparticles through electrosteric repulsion. The influence of factors such as PAA molecular weight and its concentration on the colloidal stability of the aqueous suspension was also investigated.  相似文献   

12.
The influence of anionic poly(acrylic acid) — PAA addition on the stability of synthesized silica, alumina and mixed silica-alumina suspensions as a function of solution pH was studied. The turbidimetry method was used to monitor the changes of the examined systems stability over time. The calculated stability coefficients enabled estimation of polymer adsorption influence on stability of metal oxide suspension. It was shown that the alumina suspension without the polymer is the most unstable at the pH values 6 and 9, whereas the silica polymer was most unstable at pH 3. PAA with higher molecular weight (240 000) is a relatively effective stabilizer of all investigated adsorbents (except silica at pH 3). These properties of poly(acrylic acid) are highly desirable in many branches of industry (e.g. production of cosmetics, pharmaceuticals, paints) where polymers are widely used as effective stabilizers of colloidal suspensions.   相似文献   

13.
Using a new experimental technique, “Continuous Elution Method”, the desorption behavior of polystyrene(PS) and polystyrene (PS-X) functionalized by a terminal iminium ion (-X) from α-Al2O3 and γ-Al2O3 surface were investigated, and found that PS-X is forming a terminally adsorbed polymer layer on α-Al2O3, surface. Furthermore, it was found that the adsorption force of terminally adsorbed polymer is balanced with the desorption force which is contributed from the osmotic pressure in the adsorption layer. Based on this concept, the adsorption energy of the end-functionalized polystyrene terminally adsorbed on the α-Al2O3, surface was evaluated to be 4.2 ˜4.3 kT.  相似文献   

14.
The rheological behavior of concentrated alumina-coated TiO2 slurries has been investigated in connection with the type of surface counterions (monovalent cations: X = Li+, Na+, TMA+) in the absence and in the presence of polyacrylic acid (PAA). The study has been conducted in a pH range of 4-10 and with ionic strengths lower than 0.01 M. The pH and ionic strength were adjusted with XOH and XCl, respectively. The surface properties have been investigated by titration of surface counterions and the apparent yield stress has been measured using a dynamic stress rheometer. It appears from the results that the pH at the maximum yield stress and the magnitude of the yield stress depend on the nature of the counterion. The yield stress measurements were also conducted in the presence of PAA (0.5 segment/nm2) adsorbed on the particle surface. In that case, the mineral surface and adsorbed polymer were neutralized with XOH. The results show that the dispersion efficiency depends on the polymer counterion. In general, it is found that the maximum yield stress and the corresponding counterion surface density both follow the sequence TMA+ < Na+ < Li+. The adsorption of PAA apparently amplifies the effects observed with the corresponding cation. An electrostriction effect of the hydration layer at the interface is suggested in order to explain the increasing yield stress as the surface density of Li+ increases. The so-called structure-making/structure-breaking model explains the yield stress reduction with the TMA+ surface density.  相似文献   

15.
Al2O3/chitosan-multiwall carbon nanotubes (MWCNTs) were created to increase the exchange capacity of polyvinylidene fluoride (PVDF) ion-exchange membranes. The composite membranes were made by mixing Al2O3 nanoparticles into the PVDF cast solution, then applying a thin coating of chitosan functionalized carbon nano tubes (Cs-MWCNTs) to the PVDF membrane surface. The structure and characteristics of the hybrid membranes were described using XRD, SEM, IR, and TG-DTA. The Al2O3-PVDF/Cs-MWCNTs membrane beat the other Al2O3-PVDF/Cs, Al2O3-PVDF, and PVDF membranes in terms of molybdate, phosphate, and nitrate adsorption. The removal efficiency, pH solution, adsorption capacity, and desorption process of molybdate, phosphate, and nitrate anions by Al2O3-PVDF and PVDF membranes were investigated. The removal effectiveness of molybdate, phosphate, and nitrate, according to the testing findings, was 94.3, 65.6, and 85.78 %, respectively. The adsorption of MoO42?, PO43?, and NO3? increased as the pH increased initially until the best adsorption was achieved, and then decreased significantly as the pH increased further. The total adsorption capabilities of MoO42?, PO43?, and NO3?for the Al2O3-PVDF/Cs-MWCNTs membrane were 65.50, 61.22, and 59.77 mg/g, respectively. Using regeneration and reuse experiments for the simultaneous adsorption of molybdate, phosphate, and nitrate during three consecutive cycles, the adsorption/desorption of Al2O3-PVDF/Cs-MWCNTs was assessed. Al2O3-PVDF/Cs-MWCNTs offer a lot of promise when it comes to eliminating MoO42?, PO43?, and NO3?from actual wastewater samples.  相似文献   

16.
The role of sequential adsorption of a non-interacting pair of polymer (polyacrylic acidPAA) and surfactant (sodium dodecyl sulfate-SDS) on alumina particles and in determining the stability of their suspensions was studied with particular attention to the conformation of the polymer. It was found that the sequence of addition is of critical importance in determining the dispersion/flocculation of this system. When SDS was added first, both PAA conformation and suspension stability varied with SDS concentration. Whereas when PAA was added first, the subsequent adsorption of SDS molecules had no effect on either the polymer conformation or the suspension stability. This is attributed to masking of SDS species by the larger polymer chains. SDS can not however be completely masked by PAA chains once the PAA concentration is decreased below the optimal concentration for flocculation. When the stirring duration was increased, the mode of addition showed no effect suggesting that the system then reaches equilibrium. Interestingly, a small amount of pre-adsorbed PAA was found to facilitate the adsorption of SDS.  相似文献   

17.
18.
The interaction of nitric oxide with single-crystal surfaces of alumina at temperatures of 298, 473, and 673 K, which had been covered by various amounts of iron, was studied using X-ray photoelectron spectroscopy. The iron was deposited onto Al2O3 in the Fe0 state. At low coverages, iron was partially oxidized due to its interaction with Al2O3. Scanning auger mapping analysis showed that the iron was randomly distributed on the Al2O3 surface. The amount of adsorbed NO increased with increasing iron coverage. However, at very high iron coverages, there was a decrease in adsorption. This indicated that the aluminum ions may have activated the NO adsorption on the iron atoms. For increasing temperature there was also an increase in adsorption for high iron coverages, but the adsorption decreased with increasing temperature for low iron coverages. Sticking probability calculations indicated that the adsorption was mobile and dissociative. Binding energy of the nitrogen peaks indicated that NO was adsorbed onto the Fe/Al2O3 surface as a nitride.  相似文献   

19.
The influence of chemically inert dispersed fillers (Al2O3, SiO2) on the efficiency of the polyethylene oxidation inhibition by commercial antioxidants (Irganox 1010, Neozon D) was studied. Introduction of chemically inert fillers into inhibited polymers alters the inhibitor distribution in the sample volume. The first fraction of the additive remains conventionally dissolved in the polymer (occurs in the dissolved state and in sorption sites), the second fraction is localized at the filler-polymer interface (separates out in the interfacial zone and accumulates in microcavities and voids of this zone), and the third fraction is adsorbed on the filler (forms an adsorption layer on the particle surface). As a result, the heat resistance of the filled polymer changes.  相似文献   

20.
The adsorption of carboxylic acids (formic, acetic, and pyruvic acid) from corresponding solutions in CH2Cl2 solvent on Al2O3 and TiO2 thin films has been studied by attenuated total reflection infrared spectroscopy. The metal‐oxide films were vapor‐deposited on a Ge internal reflection element, which was mounted into a specially designed flow cell. The system allowed in situ monitoring of the processes occurring at the solid‐liquid interface. The metal‐oxide films were characterized by X‐ray photoelectron spectroscopy, ellipsometry, and atomic force microscopy. Formic acid and acetic acid adsorbed predominantly as bridging species on alumina surfaces. Adsorbed free acids were not observed under a flow of neat solvent. Based on the position of the νAS(COO) and of the keto‐group stretching vibration of the pyruvate ion, pyruvic acid is proposed to coordinate to the Al2O3 surface in a monodentate fashion, whereas, on TiO2, a bidentate species is preferred. Comparison of the adsorption behavior on the vapor‐deposited alumina film and on an α‐Al2O3 layer deposited from a water suspension of the corresponding metal‐oxide powder indicated that pyruvic acid adsorbs in a similar mode, irrespective of the metal‐oxide deposition technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号