首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A molecular dynamics study of adsorption of p-n-pentylphenol at infinite dilution at the water liquid-vapor interface is reported. The calculated free energy of adsorption is -8.8 +/- 0.7 kcal/mol, in good agreement with the experimental value of -7.3 kcal/mol. The transition between the interfacial region and the bulk solution is sharp and well-defined by energetic, conformational, and orientational criteria. At the water surface, the phenol head group is mostly immersed in aqueous solvent. The most frequent orientation of the hydrocarbon tail is parallel to the interface, due to dispersion interactions with the water surface. This arrangement of the phenol ring and the alkyl chain requires that the chain exhibits a kink. As the polar head group is being moved into the solvent, the chain length increases and the tail becomes increasingly aligned toward the surface normal, such that the nonpolar part of the molecule exposed to water is minimized. The same effect was achieved when phenol was replaced by a more polar head group, phenolate. This result underscores the difference between hydrophobic hydration at the surface and in the bulk solvent, when nonpolar molecular fragments adopt compact conformations.  相似文献   

3.
4.
Molecular dynamics results are presented for phenol at the water liquid-vapor interface at 300 K. The calculated excess free energy of phenol at the interface is -2.8 +/- 0.4 kcal/mol, in good agreement with the recent experimental results of Eisenthal and co-workers. The most probable orientation of the phenol molecule at the surface is such that the aromatic ring is perpendicular to the interface and the OH group is fully immersed in water. The hydroxyl substituent has a preferred orientation which is similar to the orientation of OH bonds of water at the pure water liquid-vapor interface. The transition between interfacial and bulk-like behavior of phenol is abrupt and occurs when the center of mass of the solute is located about 6 angstroms from the Gibbs surface of water. In this region the para carbon atom of the hydrophobic benzene ring can reach the interface and become partially dehydrated. This result suggests that the width of the interfacial region in which the behavior of a simple amphiphilic solute in water is influenced by the presence of the surface depends primarily on the size of its hydrophobic part. The role of the OH substituent was investigated by comparing phenol at the interface with two model systems: benzene with and without partial charges on carbon and hydrogen atoms. It is shown that in the absence of the hydrophilic substituent the solute is located further away from the liquid phase and is more likely to be oriented parallel to the interface. However, when the center of mass of the solute is moved into the interfacial region where the density of water approaches that of the bulk solvent, all three molecules become oriented perpendicularly to the surface. In this orientation the work of cavity formation needed to accommodate the hydrophobic ring in aqueous solvent is minimized.  相似文献   

5.
6.
The gauche-trans isomerization reaction of 1,2-dichloroethane at the liquid-vapor interface of water is studied using molecular-dynamics computer simulations. The solvent bulk and surface effects on the torsional potential of mean force and on barrier recrossing dynamics are computed. The isomerization reaction involves a large change in the electric dipole moment, and as a result the trans/gauche ratio is considerably affected by the transition from the bulk solvent to the surface. Reactive flux correlation function calculations of the reaction rate reveal that deviation from the transition-state theory due to barrier recrossing is greater at the surface than in the bulk water. This suggests that the system exhibits non-Rice-Ramsperger-Kassel-Marcus behavior due to the weak solvent-solute coupling at the water liquid-vapor interface.  相似文献   

7.
The structure of the planar liquid-vapor interface of a room-temperature ionic liquid, 1-n-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]), is studied using atomistic molecular dynamics simulations. Layering of the ions at the interface is observed as oscillations in the corresponding number density profiles. These oscillations, however, are diminished in amplitude in the electron density profile, due to a near cancellation in the contributions from the anions and the cations. An enhancement by 12% in the electron density at the interface over its value in the bulk liquid is observed, in excellent agreement with X-ray reflectivity experiments. The anions are found to predominantly contribute to this increase in the interfacial electron density. The cations present at the interface are oriented anisotropically. Their butyl chains are observed to be preferentially oriented along the interface normal and to project outside the liquid surface, thus imparting a hydrophobic character. In the densest region of the interface, the imidazolium ring plane is found to lie parallel to the surface normal, in agreement with direct recoil spectroscopy experiments.  相似文献   

8.
Molecular dynamics simulations are utilized to simulate a model liquid-vapor-amphiphile system. Amphiphilic surfactant molecules are modeled as dimers composed of a hydrophilic head and a hydrophobic tail. Three dimer models with three different head sizes and two different head-to-tail size ratios are studied. The surfactant molecules distribute preferentially at the interfaces at low concentrations and form micelles in the bulk liquid phase as the concentration increases. We find that the surface tension decreases as molecular concentration increases, with a reduction in the rate of decrease after micellization occurs. The extent to which a surfactant can reduce the surface tension at a given concentration is found to depend on the head size. Furthermore, the head size and concentration dependence of the surfactant tilt-angle distribution is studied and compared to experimental data.  相似文献   

9.
Gemini surfactants typically consist of two single-chain surfactants chemically linked by a spacer molecule. We report herein the results of fully atomistic molecular dynamics (MD) simulations of a series of Gemini surfactants: CsH2s-alpha,omega-bis(C12H25N+(CH3)2Cl-), at the air/water interface with s = 3, 4, 6, 12, 14, and 16, at values of the initial surface area per surfactant AS = 70 A2, 77 A2, 95 A2, 151 A2, 133 A2, and 103 A2, respectively. The AS values employed were obtained from surface tension and neutron reflection experiments at the respective cmc of each surfactant. The Gemini surfactant corresponding to s = 3 was also simulated at AS = 105 A2, which is the experimentally derived value of surface area per surfactant at 1/10th of cmc. Only the surfactants with s = 12 and 14 and the surfactant with s = 3 at AS = 105 A2 gave a stable monolayer at the air/water interface. In other cases, we observe movement of some surfactant molecules from the air/water interface into the aqueous phase, resulting in a stable primary monolayer of surfactants at the air/water interface and a small concentration of surfactant molecules below it. The latter form aggregates, with their hydrophobic chains in the core. The density profiles along the normal to the interface are compared with the ones obtained from neutron reflection experiments. The MD simulations confirm the bending of the spacer toward the hydrophobic chains as the spacer length is increased and the spacer becomes more hydrophobic. The simulations have helped to shed light on the low-resolution picture which emerges from experimental analyses.  相似文献   

10.
We have carried out ab initio molecular dynamics simulations of a liquid-vapor interfacial system consisting of a mixture of water and ammonia molecules. We have made a detailed analysis of the structural and dynamical properties of the bulk and interfacial regions of the mixture. Among structural properties, we have looked at the inhomogeneous density profiles of water and ammonia molecules, hydrogen bond distributions, orientational profiles, and also vibrational frequency distributions of bulk and interfacial molecules. It is found that the interfacial molecules show preference for specific orientations so as to form water-ammonia hydrogen bonds at the interface with ammonia as the acceptor. The structure of the system is also investigated in terms of inter-atomic voids present in the system. Among the dynamical properties, we have calculated the diffusion, orientational relaxation, hydrogen bond dynamics, and vibrational spectral diffusion in bulk and interfacial regions. It is found that the diffusion and orientation relaxation of the interfacial molecules are faster than those of the bulk. However, the hydrogen bond lifetimes are longer at the interface which can be correlated with the time scales found from the decay of frequency time correlations.  相似文献   

11.
This research addresses a comprehensive particle-based simulation study of the structural, dynamic, and electronic properties of the liquid-vapor interface of water utilizing both ab initio (based on density functional theory) and empirical (fixed charge and polarizable) models. Numerous properties such as interfacial width, hydrogen bond populations, dipole moments, and correlation times will be characterized with identical schemes to draw useful conclusions on the strengths and weakness of the proposed models for interfacial water. Our findings indicate that all models considered in this study yield similar results for the radial distribution functions, hydrogen bond populations, and orientational relaxation times. Significant differences in the models appear when examining both the dipole moments and surface relaxation near the aqueous liquid-vapor interface. Here, the ab initio interaction potential predicts a significant decrease in the molecular dipole moment and expansion in the oxygen-oxygen distance as one approaches the interface in accordance with recent experiments. All classical polarizable interaction potentials show a less dramatic drop in the molecular dipole moment, and all empirical interaction potentials studied yield an oxygen-oxygen contraction as the interface is approached.  相似文献   

12.
A molecular dynamics simulation of water molecules through a Au nanotube with a diameter of 20 A at bulk densities 0.8, 1, and 1.2 gcm(3) has been carried out. The water molecules inside a nanoscale tube, unlike those inside a bulk tube, have a confined effect. The interaction energy of the Au nanotube wall has a direct influence on the distribution of water molecules inside the Au tube in that the adsorption of the water molecules creates shell-like formations of water. Moreover, the high number of adsorbed molecules has already achieved saturation at the wall of the Au nanotube at three bulk densities. This work compares the distribution percentage profiles of hydrogen bonds for different regions inside the tube. The structural characteristics of water molecules inside the tube have also been studied. The results reveal that the numbers of hydrogen bonds per water molecule influence the orientational order parameter q. In addition, the phenomenon of a group of molecules bonded inside the tube can be observed as the number of hydrogen bonds increase.  相似文献   

13.
Recently, the intrinsic sampling method has been developed in order to obtain, from molecular simulations, the intrinsic structure of the liquid-vapor interface that is presupposed in the classical capillary wave theory. Our purpose here is to study dynamical processes at the liquid-vapor interface, since this method allows tracking down and analyzing the movement of surface molecules, thus providing, with great accuracy, dynamical information on molecules that are "at" the interface. We present results for the coefficients for diffusion parallel and perpendicular to the liquid-vapor interface of the Lennard-Jones fluid, as well as other time and length parameters that characterize the diffusion process in this system. We also obtain statistics of permanence and residence time. The generality of our results is tested by varying the system size and the temperature; for the latter case, an existing model for alkali metals is also considered. Our main conclusion is that, even if diffusion coefficients can still be computed, the turnover processes, by which molecules enter and leave the intrinsic surface, are as important as diffusion. For example, the typical time required for a molecule to traverse a molecular diameter is very similar to its residence time at the surface.  相似文献   

14.
Capillary waves occurring at the liquid-vapor interface of water are studied using molecular dynamics simulations. In addition, the surface tension, determined thermodynamically from the difference in the normal and tangential pressure at the liquid-vapor interface, is compared for a number of standard three- and four-point water models. We study four three-point models (SPC/E, TIP3P, TIP3P-CHARMM, and TIP3P-Ew) and two four-point models (TIP4P and TIP4P-Ew). All of the models examined underestimate the surface tension; the TIP4P-Ew model comes closest to reproducing the experimental data. The surface tension can also be determined from the amplitude of capillary waves at the liquid-vapor interface by varying the surface area of the interface. The surface tensions determined from the amplitude of the logarithmic divergence of the capillary interfacial width and from the traditional thermodynamic method agree only if the density profile is fitted to an error function instead of a hyperbolic tangent function.  相似文献   

15.
Though the local dielectric constant at interfaces is an important phenomenological parameter in the analysis of surface spectroscopy, its microscopic definition has been uncertain. Here, we present a full molecular theory on the local field at interfaces with the help of molecular dynamics simulation, and thereby provide microscopic basis for the local dielectric constant so as to be consistent to the phenomenological three-layer model of interface systems. To demonstrate its performance, we applied the theory to the water/vapor interface, and obtained the local field properties near the interface where the simple dielectric model breaks down. Some computational issues pertinent to Ewald calculations of the dielectric properties are also discussed.  相似文献   

16.
The equilibrium and dynamical properties of the liquid-vapor interface of pure acetonitrile are studied by means of molecular dynamics simulations. Both nonpolarizable and polarizable models are employed in the present study. For the nonpolarizable model, the simulations are carried out for two different system sizes and at two different temperatures whereas the simulation with the polarizable model is done for a single system. The inhomogeneous density, anisotropic orientational profile, the width of the interface, and also the surface tension are calculated at room temperature and also at a lower temperature of 273 K. The dynamical aspects of the interface are investigated in terms of the single-particle dynamical properties such as the relaxation of velocity autocorrelation and the translational diffusion coefficients along the perpendicular and parallel directions and the dipole orientational relaxation of the interfacial acetonitrile molecules. The results of the interfacial dynamics are compared with those of the corresponding bulk phases at both temperatures. The convergence of the calculated results with respect to the length of simulation runs and the system size are also discussed.  相似文献   

17.
Using molecular dynamics (MD) simulations, we investigate the interfacial distribution of partners involved in the phase transfer rhodium catalyzed hydroformylation of olefins promoted by beta-cyclodextrins (beta-CDs). The beta-CDs, the reactant (alkene), product (aldehyde), several rhodium complexes (the catalyst, its precursor, and its alkene adduct) are simulated at the water-"oil" interface, where oil is represented by chloroform or hexane. It is shown that unsubstituted beta-CD and its 6-methylated and 2,6-dimethylated analogues adsorb at the interface, whereas the liposoluble permethylated CD does not. The precursor of the catalyst [RhH(CO)(TPPTS)3]9- (with triphenylphosphine trisulfonated TPPTS3- ligands) sits in water, but the less charged [RhH(CO)(TPPTS)2]6- catalyst and the [RhH(CO)(TPPTS)2(alkene)]6- reaction intermediate are clearly surface active. The TPPTS3- anions also concentrate at the interface, where they adopt an amphiphilic conformation, forming an electrical double layer with their Na+ counterions. Thus, the most important key partners involved in the hydroformylation reaction concentrate at the interface, thereby facilitating the reaction, a process which may be further facilitated upon complexation by CDs. These results point to the importance of adsorption at the liquid-liquid interface in the two-phase hydroformylation reaction of olefins promoted by beta-CDs and provide microscopic pictures of this peculiar region of the solution.  相似文献   

18.
19.
20.
郭洪霞 《高分子科学》2014,32(10):1298-1310
We present a coarse-grained molecular dynamics simulation study of phase behavior of amphiphilic monolayers at the liquid crystal (LC)/water interface. The results revealed that LCs at interface can influence the lateral ordering of amphiphiles. Particularly, the amphiphile tails along with perpendicularly penetrated LCs between tails undergo a two-dimension phase transition from liquid-expanded into a liquid-condensed phase as their area density at interface reaches 0.93. While, the liquid-condensed phase of the monolayer never appears at oil/water interface with isotropic shape oil particles. These findings reveal the penetration of anisotropic LC can promote ordered lateral organization of amphiphiles. Moreover, we find the phase transition point is shifted to lower surface coverage of amphiphiles when the LCs have larger affinity to the amphiphile tails.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号