首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
DNA.RNA hybrid duplexes are biologically important molecules and are shown to have potential therapeutic properties. To investigate the relationship between structures, energetics, solvation and RNase H activity of hybrid duplexes in comparison with pure DNA and RNA duplexes, a molecular dynamics study using the CHARMM27 force field was undertaken. The structural properties of all four nucleic acids considered are in very good agreement with the experimental data. The backbone dihedral angles and the puckering of the (deoxy)ribose indicate that the purine rich strands retain their A-/B-like properties but the pyrimidine rich DNA strand undergoes A-B conformational transitions. The minor groove widths of the hybrid structures are narrower than those in the RNA duplex, a requirement for RNase H binding. In addition, sampling of noncanonical phosphodiester backbone dihedrals by the DNA strands, differential solvation properties and helical properties, most notably rise, are suggested to contribute to hybrids being RNase H substrates. Differential RNase H activity toward hybrids containing purine versus pyrimidine rich RNA strands is suggested to be due to sampling of values of the phosphodiester backbone dihedrals in the DNA strands. Notably, the present results indicate that hybrids have decreased flexibility as compared to RNA, in contrast to previous reports.  相似文献   

2.
Molecular dynamics is used to investigate the properties of the DNA.RNA hybrid in aqueous solution at room temperature. The structure of the hybrid is intermediate between A and B forms but, in general, closer to the canonical A-type helix. All the riboses exhibit North puckerings, while 2'-deoxyriboses exist in North, East, and South puckerings, the latter being the most populated one. The molecular recognition pattern of the DNA.RNA hybrid is a unique combination of those of normal DNA and RNA duplexes. Finally, the results obtained from essential dynamics and stiffness analysis demonstrate the large and very asymmetric flexibility of the hybrid and the strong predilection that each strand (DNA or RNA) has on the nature of their intrinsic motions in the corresponding homoduplexes. The implications of the unique structural and dynamic properties of the DNA.RNA hybrid on the mechanism of cleavage by RNase H are discussed.  相似文献   

3.
Spectroscopic and calorimetric techniques were employed to characterize and contrast the binding of the aminoglycoside paromomycin to three octamer nucleic acid duplexes of identical sequence but different strand composition (a DNA.RNA hybrid duplex and the corresponding DNA.DNA and RNA.RNA duplexes). In addition, the impact of paromomycin binding on both RNase H- and RNase A-mediated cleavage of the RNA strand in the DNA.RNA duplex was also determined. Our results reveal the following significant features: (i) Paromomycin binding enhances the thermal stabilities of the RNA.RNA and DNA.RNA duplexes to similar extents, with this thermal enhancement being substantially greater in magnitude than that of the DNA.DNA duplex. (ii) Paromomycin binding to the DNA.RNA hybrid duplex induces CD changes consistent with a shift from an A-like to a more canonical A-conformation. (iii) Paromomycin binding to all three octamer duplexes is linked to the uptake of a similar number of protons, with the magnitude of this number being dependent on pH. (iv) The affinity of paromomycin for the three host duplexes follows the hierarchy, RNA.RNA > DNA.RNA > DNA.DNA. (v) The observed affinity of paromomycin for the RNA.RNA and DNA.RNA duplexes decreases with increasing pH. (vi) The binding of paromomycin to the DNA.RNA hybrid duplex inhibits both RNase H- and RNase A-mediated cleavage of the RNA strand. We discuss the implications of our combined results with regard to the specific targeting of DNA.RNA hybrid duplex domains and potential antiretroviral applications.  相似文献   

4.
The first structure of a 2'-deoxy-2'-fluoro-D-arabinose nucleic acid (2'F-ANA)/RNA duplex is presented. We report the structural characterization by NMR spectroscopy of a small hybrid hairpin, r(GGAC)d(TTCG)2'F-a(GTCC), containing a 2'F-ANA/RNA stem and a four-residue DNA loop. Complete (1)H, (13)C, (19)F, and (31)P resonance assignments, scalar coupling constants, and NOE constraints were obtained from homonuclear and heteronuclear 2D spectra. In the chimeric duplex, the RNA strand adopts a classic A-form structure having C3' endo sugar puckers. The 2'F-ANA strand is neither A-form nor B-form and contains O4' endo sugar puckers. This contrasts strongly with the dynamic sugar conformations previously observed in the DNA strands of DNA/RNA hybrid duplexes. Structural parameters for the duplex, such as minor groove width, x-displacement, and inclination, were intermediate between those of A-form and B-form duplexes and similar to those of DNA/RNA duplexes. These results rationalize the enhanced stability of 2'F-ANA/RNA duplexes and their ability to elicit RNase H activity. The results are relevant for the design of new antisense drugs based on sugar-modified nucleic acids.  相似文献   

5.
We have used NMR and CD spectroscopy to study the conformations of modified oligonucleotides (locked nucleic acid, LNA) containing a conformationally restricted nucleotide (T(L)) with a 2'-O,4'-C-methylene bridge. We have investigated two LNA:RNA duplexes, d(CTGAT(L)ATGC):r(GCAUAUCAG) and d(CT(L)GAT(L)AT(L)GC):r(GCAUAUCAG), along with the unmodified DNA:RNA reference duplex. Increases in the melting temperatures of +9.6 degrees C and +8.1 degrees C per modification relative to the unmodified duplex were observed for these two LNA:RNA sequences. The three duplexes all adopt right-handed helix conformations and form normal Watson-Crick base pairs with all the bases in the anti conformation. Sugar conformations were determined from measurements of scalar coupling constants in the sugar rings and distance information derived from 1H-1H NOE measurements; all the sugars in the RNA strands of the three duplexes adopt an N-type conformation (A-type structure), whereas the sugars in the DNA strands change from an equilibrium between S- and N-type conformations in the unmodified duplex towards more of the N-type conformation when modified nucleotides are introduced. The presence of three modified T(L) nucleotides induces drastic conformational shifts of the remaining unmodified nucleotides of the DNA strand, changing all the sugar conformations except those of the terminal sugars to the N type. The CD spectra of the three duplexes confirm the structural changes described above. On the basis of the results reported herein, we suggest that the observed conformational changes can be used to tune LNA:RNA duplexes into substrates for RNase H: Partly modified LNA:RNA duplexes may adopt a duplex structure between the standard A and B types, thereby making the RNA strand amenable to RNase H-mediated degradation.  相似文献   

6.
Three α-l-ribofuranosyl analogues of RNA nucleotides (α-l-RNA analogues) have been synthesized and incorporated into oligonucleotides using the phosphoramide approach on an automated DNA synthesizer. The 4′-C-hydroxymethyl-α-l-ribofuranosyl thymine monomer was furthermore synthesized. Relative to the unmodified duplexes, incorporation of a single α-l-RNA monomer into a DNA strand leads to reduced thermal stability of duplexes with DNA complements but unchanged thermal stability of duplexes with RNA complements, whereas incorporation of more than one α-l-RNA monomer lead to moderately decreased thermal stability also of duplexes with RNA complements. Efficient hybridization with an RNA complement and no melting transition with a DNA complement were observed with stereoregular chimeric oligonucleotides composed of a mixture of α-l-RNA and affinity enhancing α-l-LNA monomers (α-l-ribo-configured locked nucleic acid). Furthermore, duplexes formed between oligodeoxynucleotides containing an α-l-RNA monomer and complementary RNA were good substrates for Escherichia coli RNase H. RNA-selective hybridization was also achieved by the incorporation of 1-(4-C-hydroxymethyl-β-d-lyxofuranosyl)thymine monomers into a DNA strand, whereas stable duplexes were formed with both complementary DNA and RNA when these monomers were incorporated into an RNA strand.  相似文献   

7.
Current studies of lariat RNA structure and function are hindered by the lack of access to synthetic lariats. A novel approach to the synthesis of both DNA and RNA lariats is presented here. Noteworthy features of the methodology are the regiospecific formation of the 2'-5'-phosphodiester linkage, the unusual parallel stranded DNA/RNA hybrid (or parallel RNA/RNA duplex) that forms between an RNA template and a folded 22-nt DNA (or RNA) substrate, and the efficiency of the chemical ligation step at an adenosine branchpoint (50-80%). The DNA and RNA lariats were purified by polyacrylamide gel electrophoresis, and their structure and nucleotide composition were confirmed by MALDI-TOF mass spectrometry. Thermal denaturation as well as enzymatic and chemical hydrolysis fully supported the proposed lariat structures. Characterization of control parallel duplexes was conducted by gel shift assays and enzymatic degradation with RNase H. The successful synthesis of the lariat molecules described here will allow structural and biochemical studies aimed at better understanding the splicing and debranching mechanisms in which these unusual nucleic acids are involved.  相似文献   

8.
2',4'-Propylene-bridged thymidine (carba-ENA-T) and five 8'-Me/NH(2)/OH modified carba-ENA-T analogues have been prepared through intramolecular radical addition to C═N of the tethered oxime-ether. These carba-ENA nucleosides have been subsequently incorporated into 15mer oligodeoxynucleotides (AON), and their affinity toward cDNA and RNA, nuclease resistance, and RNase H recruitment capability have been investigated in comparison with those of the native and ENA counterparts. These carba-ENAs modified AONs are highly RNA-selective since all of them led to slight thermal stabilization effect for the AON:RNA duplex, but quite large destabilization effect for the AON:DNA duplex. It was found that different C8' substituents (at the bottom of the minor groove) on carba-ENA-T only led to rather small variation of thermal stability of the AON:RNA duplexes. We, however, observed that the parent carba-ENA-T modified AONs exhibited higher nucleolytic stability than those of the ENA-T modified counterparts. The nucleolytic stability of carba-ENA-T modified AONs can be further modulated by C8' substituent to variable extents depending on not only the chemical nature but also the stereochemical orientation of the C8' substituents: Thus, (1) 8'S-Me on carba-ENA increases the nucleolytic stability but 8'R-Me leads to a decreased effect; (2) 8'R-OH on carba-ENA had little, if any, effect on nuclease resistance but 8'S-OH resulted in significantly decreased nucleolytic stability; and (3) 8'-NH(2) substituted carba-ENA leads to obvious loss in the nuclease resistance. The RNA strand in all of the carba-ENA derivatives modified AON:RNA hybrid duplexes can be digested by RNase H1 with high efficiency, even at twice the rate of those of the native and ENA modified counterpart.  相似文献   

9.
Ribonuclease H (RNase H) belongs to the nucleotidyl-transferase (NT) superfamily and hydrolyzes the phosphodiester linkages that form the backbone of the RNA strand in RNA x DNA hybrids. This enzyme is implicated in replication initiation and DNA topology restoration and represents a very promising target for anti-HIV drug design. Structural information has been provided by high-resolution crystal structures of the complex RNase H/RNA x DNA from Bacillus halodurans (Bh), which reveals that two metal ions are required for formation of a catalytic active complex. Here, we use classical force field-based and quantum mechanics/molecular mechanics calculations for modeling the nucleotidyl transfer reaction in RNase H, clarifying the role of the metal ions and the nature of the nucleophile (water versus hydroxide ion). During the catalysis, the two metal ions act cooperatively, facilitating nucleophile formation and stabilizing both transition state and leaving group. Importantly, the two Mg(2+) metals also support the formation of a meta-stable phosphorane intermediate along the reaction, which resembles the phosphorane intermediate structure obtained only in the debated beta-phosphoglucomutase crystal (Lahiri, S. D.; et al. Science 2003, 299 (5615), 2067-2071). The nucleophile formation (i.e., water deprotonation) can be achieved in situ, after migration of one proton from the water to the scissile phosphate in the transition state. This proton transfer is actually mediated by solvation water molecules. Due to the highly conserved nature of the enzymatic bimetal motif, these results might also be relevant for structurally similar enzymes belonging to the NT superfamily.  相似文献   

10.
Novel phosphorothioate-modified oligodeoxynucleotides (S-ODNs) containing a deoxyuridine derivative bearing a spermine moiety at the C-5 position were synthesized. The study of the thermal stability and the thermodynamic stability showed that the modified S-ODNs have been able to form the stable duplexes with the complementary DNA. It was also found that the duplex composed of the modified S-ODN and its complementary RNA strand is the substrate for Escherichia coli RNase H, and the cleavage of the RNA strand by the enzyme was almost similar as in the case of the unmodified one.  相似文献   

11.
The K(+)-H(+)-triggered structural conversion of multiple nucleic acid helices involving duplexes, triplexes, G-quadruplexes, and i-motifs is studied by gel electrophoresis, circular dichroism, and thermal denaturation. We employ the structural interconversions for perfoming molecular logic operations, as verified by fluorimetry and colorimetry. Short G-rich and C-rich cDNA and RNA single strands are hybridized to produce four A-form and B-form duplexes. Addition of K(+) triggers the unwinding of the duplexes by inducing the folding of G-rich strands into DNA- or RNA G-quadruplex mono- and multimers, respectively. We found a decrease in pH to have different consequences on the resulting structural output, depending on whether the C-rich strand is DNA or RNA: while the protonated C-rich DNA strand folds into at least two isomers of a stable i-motif structure, the protonated C-rich RNA strand binds a DNA/RNA hybrid duplex to form a Y·RY parallel triplex. When using K(+) and H(+) as external stimuli, or inputs, and the induced G-quadruplexes as reporters, these structural interconversions of nucleic acid helices can be employed for performing logic-gate operations. The signaling mode for detecting these conversions relies on complex formation between DNA or RNA G-quadruplexes (G4) and the cofactor hemin. The G4/hemin complexes catalyze the H(2)O(2)-mediated oxidation of peroxidase substrates, resulting in a fluorescence or color change. Depending on the nature of the respective peroxidase substrate, distinct output signals can be generated, allowing one to operate multiple logic gates such as NOR, INH, or AND.  相似文献   

12.
The ability of modified antisense oligonucleotides (AONs) containing acyclic interresidue units to support RNase H-promoted cleavage of complementary RNA is described. Manipulation of the backbone and sugar geometries in these conformationally labile monomers shows great benefits in the enzymatic recognition of the nucleic acid hybrids, while highlighting the importance of local strand conformation on the hydrolytic efficiency of the enzyme more conclusively. Our results demonstrate that the duplexes support remarkably high levels of enzymatic degradation when treated with human RNase HII, making them efficient mimics of the native substrates. Furthermore, interesting linker-dependent modulation of enzymatic activity is observed during in vitro assays, suggesting a potential role for this AON class in an RNase H-dependent pathway of controlling RNA expression. Additionally, the butyl-modified 2'F-ANA AONs described in this work constitute the first examples of a nucleic acid species capable of eliciting high RNase H activity while possessing a highly flexible molecular architecture at predetermined sites along the AON.  相似文献   

13.
The syntheses of monomeric nucleosides and 3'-O-phosphoramidite building blocks en route to alpha-L-ribo-configured locked nucleic acids (alpha-L-LNA), composed entirely of alpha-L-LNA monomers (alpha-L-ribo configuration) or of a mixture of alpha-L-LNA and DNA monomers (beta-D-ribo configuration), are described and the alpha-L-LNA oligomers are studied. Bicyclic 5-methylcytosin-1-yl and adenine-9-yl nucleoside derivatives have been prepared and the phosphoramidite approach has been used for the automated oligomerization leading to alpha-L-LNA oligomers. Binding studies revealed very efficient recognition of single-stranded DNA and RNA target oligonucleotide strands. Thus, stereoirregular alpha-L-LNA 11-mers containing a mixture of alpha-L-LNA monomers and DNA monomers ("mix-mer alpha-L-LNA") were shown to display DeltaT(m) values of +1 to +3 degrees C per modification toward DNA and +4 to +5 degrees C toward RNA when compared with the corresponding unmodified DNA x DNA and DNA x RNA reference duplexes. The corresponding DeltaT(m) values per modification for the stereoregular fully modified alpha-L-LNA were determined to be +4 degrees C (against DNA) and +5 degrees C (against RNA). 11-Mer alpha-L-LNAs (mix-mer alpha- L-LNA or fully modified alpha- L-LNA) were shown in vitro to be significantly stabilized toward 3'-exonucleolytic degradation. A duplex formed between RNA and either mix-mer alpha-L-LNA or fully modified alpha-L-LNA induced in vitro Escherichia coli RNase H-mediated cleavage, albeit very slow, of the RNA targets at high enzyme concentrations.  相似文献   

14.
15.
The first unlocked nucleic acid (UNA) monomer was described more than a decade ago, but only recent reports have revealed the true potential applications of this acyclic RNA mimic. UNA monomers enable the modulation of the thermodynamic stability of various nucleic acid structures such as RNA and DNA duplexes, quadruplexes or i-motifs. Moreover, UNA monomers were found to be compatible with RNase H activity, a property which is important for single stranded antisense constructs. Notably, UNA monomers can be applied in the design of superior siRNAs, combining potent gene silencing and dramatically reduced off-target effects.  相似文献   

16.
RNase H是一种专一性水解RNA:DNA杂合链中RNA链的核糖核酸酶,它广泛存在于从原核生物到人的生物体中.本文通过等温滴定量热技术研究了Mg2+,Mn2+和Ca2+与一种古细菌Methanococcus jannaschii中的II型RNase H结合的热力学.首次用这种方法获得了这一结合过程的热力学参数.并证实了这些金属离子与RNase HII按1∶1结合.为RNase HII酶反应机理和折叠研究提供了重要信息.  相似文献   

17.
Antisense oligonucleotides (AONs) with single and double oxetane C modifications [1',2'-oxetane constrained cytidine, 1-(1',3'-O-anhydro-beta-D-psicofuranosyl)cytosine] have been evaluated, in comparison with the corresponding T-modified AONs, for their antisense potentials by targeting to a 15mer complementary RNA. Although the C modified mixmer AONs show approximately 3 degrees C drop per modification in melting temperature (Tm) of their hybrid AON-RNA duplexes, they are found to be good substrates for RNase H, in comparison with the native AON-RNA duplex. An AON with double C modifications along with 3'-DPPZ (dipyridophenazine) conjugation shows the Tm of the hybrid duplexes as high as that of the native, and the RNase H activity as good as its unconjugated counterpart. A detailed Michaelis-Menten kinetic analysis of RNase H cleavage showed that the single and double C modified AON-RNA duplexes as well as double C modifications along with 3'-DPPZ have catalytic activities (kcat) close to the native. However, the R Nase H binding affinity (1/Km) showed a slight decrease with increase in the number of modifications, which results in less effective enzyme activity (kcat/Km) for C modified AON-RNA duplexes. All oxetane modified AON-RNA hybrids showed a correlation of Tm with the 1/Km, Vmax, or Vmax/Km. The C modified AONs (with 3'-DPPZ), as in the T counterpart, showed an enhanced tolerance towards the endonuclease and exonuclease degradation compared to the native (the oxetane-sugar and the DPPZ based AONs are non-toxic to K562 cell growth, ref. 18). Thus a balance has been found between exo and endonuclease stability vis-a-vis thermostability of the heteroduplex and the R Nase H recruitment capability and cleavage with the oxetane-constrained cytidine incorporated AONs as potential antisense candidates with a fully phosphate backbone for further biological assessment.  相似文献   

18.
To understand why the RNA-RNA duplexes in general has a higher thermodynamic stability over the corresponding DNA-DNA duplexes, we have measured the pK(a) values of both nucleoside 3',5'-bis-ethyl phosphates [Etp(d/rN)pEt] and nucleoside 3'-ethyl phosphates [(d/rN)pEt] (N = A, G, C, or T/U), modeling as donors and acceptors of base pairs in duplexes. While the 3',5'-bis-phosphates, Etp(d/rN)pEt, mimic the internucleotidic monomeric units of DNA and RNA, in which the stacking contribution is completely absent, the 3'-ethyl phosphates, (d/rN)pEt, mimic the nucleotide at the 5'-end. The pK(a) values of the nucleobase in each of these model nucleoside phosphates have been determined with low pK(a) error (sigma = +/-0.01 to 0.02) by (1)H NMR (at 500 MHz) with 20-33 different pH measurements for each compound. This study has led us to show the following: (1) All monomeric DNA nucleobases are more basic than the corresponding RNA nucleobases in their respective Etp(d/rN)pEt and (d/rN)pEt. (2) The pK(a) values of the monomeric nucleotide blocks as well as Delta pK(a) values between the donor and acceptor can be used to understand the relative base-pairing strength in the oligomeric duplexes in the RNA and DNA series. (3) The Delta G*(pKa) of the donor and acceptor of the base pair in duplexes enables a qualitative dissection of the relative strength of the base-pairing and stacking in the RNA-RNA over the DNA-DNA duplexes. (4) It is also found that the relative contribution of base-pairing strength and nucleobase stacking in RNA-RNA over DNA-DNA is mutually compensating as the % A-T/U content increases or decreases. This interdependency of stacking and hydrogen bonding can be potentially important in the molecular design of the base-pair mimics to expand the alphabet of the genetic code.  相似文献   

19.
Spectroscopic techniques are employed to probe relationships between structural dynamics and charge transfer (CT) efficiency in DNA duplexes and DNA:RNA hybrids containing photoexcited 2-aminopurine (Ap). To better understand the variety of interactions and reactions, including CT, between Ap and DNA, the fluorescence behavior of Ap is investigated in a full series of redox-inactive as well as redox-active assemblies. Thus, Ap is developed as a dual reporter of structural dynamics and base-base CT reactions in nucleic acid duplexes. CD, NMR, and thermal denaturation profiles are consistent with the family of DNA duplexes adopting a distinct conformation versus the DNA:RNA hybrids. Fluorescence measurements establish that the d(A)-r(U) tract of the DNA:RNA hybrid exhibits enhanced structural flexibility relative to that of the d(A)-d(T) tract of the DNA duplexes. The yield of CT from either G or 7-deazaguanine (Z) to Ap in the assemblies was determined by comparing Ap emission in redox-active G- or Z-containing duplexes to otherwise identical duplexes in which the G or Z is replaced by inosine (I), the redox-inactive nucleoside analogue. Investigations of CT not only demonstrate efficient intrastrand base-base CT in the DNA:RNA hybrids but also reveal a distance dependence of CT yield that is more shallow through the d(A)-r(U) bridge of the A-form DNA:RNA hybrids than through the d(A)-d(T) bridge of the B-form DNA duplexes. The shallow distance dependence of intrastrand CT in DNA:RNA hybrids correlates with the increased conformational flexibility of bases within the hybrid duplexes. Measurements of interstrand base-base CT provide another means to distinguish between the A- and B-form helices. Significantly, in the A-form DNA:RNA hybrids, a similar distance dependence is obtained for inter- and intrastrand reactions, while, in B-DNA, a more shallow distance dependence is evident with interstrand CT reactions. These observations are consistent with evaluations of intra- and interstrand base overlap in A- versus B-form duplexes. Overall, these data underscore the sensitivity of CT chemistry to nucleic acid structure and structural dynamics.  相似文献   

20.
Tang H  Yang X  Wang K  Tan W  Li H  He L  Liu B 《Talanta》2008,75(5):1388-1393
A novel RNA-templated single-base mutation detection method based on T4 DNA ligase and reverse molecular beacon (rMB) has been developed and successfully applied to identification of single-base mutation in codon 273 of the p53 gene. The discrimination was carried out using allele-specific primers, which flanked the variable position in the target RNA and was ligated using T4 DNA ligase only when the primers perfectly matched the RNA template. The allele-specific primers also carried complementary stem structures with end-labels (fluorophore TAMRA, quencher DABCYL), which formed a molecular beacon after RNase H digestion. One-base mismatch can be discriminated by analyzing the change of fluorescence intensity before and after RNase H digestion. This method has several advantages for practical applications, such as direct discrimination of single-base mismatch of the RNA extracted from cell; no requirement of PCR amplification; performance of homogeneous detection; and easily design of detection probes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号