首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The energetics of the C-F, C-Cl, C-Br, and C-I bonds in 2-haloethanols was investigated by using a combination of experimental and theoretical methods. The standard molar enthalpies of formation of 2-chloro-, 2-bromo-, and 2-iodoethanol, at 298.15 K, were determined as Delta(f)H(degree)m(CH2CH2OH, l) = -315.5 +/- 0.7 kJ.mol-1, Delta(f)H(degree)mBrCH2CH2OH, l) = -275.8 +/- 0.6 kJ.mol-1, Delta(f)H(degree)m(ICH2CH2OH, l) = -207.3 +/- 0.7 kJ.mol-1, by rotating-bomb combustion calorimetry. The corresponding standard molar enthalpies of vaporization, Delta(vap)H(degree)m(ClCH2CH2OH) = 48.32 +/- 0.37 kJ.mol-1, Delta(vap)H(degree)m(BrCH2CH2OH) = 54.08 +/- 0.40 kJ.mol-1, and Delta(vap)H(degree)m(ICH2CH2OH) = 57.03 +/- 0.20 kJ.mol-1 were also obtained by Calvet-drop microcalorimetry. The condensed phase and vaporization enthalpy data lead to Delta(f)H(degree)m(ClCH2CH2OH, g) = -267.2 +/- 0.8 kJ.mol-1, Delta(f)H(degree)m(BrCH2CH2OH, g) = -221.7 +/- 0.7 kJ.mol-1, and Delta(f)H(degree)m(ICH2CH2OH, g) = -150.3 +/- 0.7 kJ.mol-1. These values, together with the enthalpy of selected isodesmic and isogyric gas-phase reactions predicted by density functional theory (B3LYP/cc-pVTZ) and CBS-QB3 calculations were used to derive the enthalpies of formation of gaseous 2-fluoroethanol, Delta(f)H(degree)m(FCH2CH2OH, g) = -423.6 +/- 5.0 kJ.mol-1, and of the 2-hydroxyethyl radical, Delta(f)H(degree)m(CH2CH2OH, g) = -28.7 +/- 8.0 kJ.mol-1. The obtained thermochemical data led to the following carbon-halogen bond dissociation enthalpies: DHo(X-CH2CH2OH) = 474.4 +/- 9.4 kJ.mol-1 (X = F), 359.9 +/- 8.0 kJ.mol-1 (X = Cl), 305.0 +/- 8.0 kJ.mol-1 (X = Br), 228.7 +/- 8.1 kJ.mol-1 (X = I). These values were compared with the corresponding C-X bond dissociation enthalpies in XCH2COOH, XCH3, XC2H5, XCH=CH2, and XC6H5. In view of this comparison the computational methods mentioned above were also used to obtain Delta(f)H(degree)m-594.0 +/- 5.0 kJ.mol-1 from which DHo(F-CH2COOH) = 435.4 +/- 5.4 kJ.mol-1. The order DHo(C-F) > DHo(C-Cl) > DHo(C-Br) > DHo(C-I) is observed for the haloalcohols and all other RX compounds. It is finally concluded that the major qualitative trends exhibited by the C-X bond dissociation enthalpies for the series of compounds studied in this work can be predicted by Pauling's electrostatic-covalent model.  相似文献   

2.
The values of the molar standard enthalpies of formation, Delta(f)H(o)(m)(C(76), cr) = (2705.6 +/- 37.7) kJ x mol(-1), Delta(f)H(o)(m)(C(78), cr) = (2766.5 +/- 36.7) kJ x mol(-1), and Delta(f)H(o)(m)(C(84), cr) = (2826.6 +/- 42.6) kJ x mol(-1), were determined from the energies of combustion, measured by microcombustion calorimetry on a high-purity sample of the D(2) isomer of fullerene C(76), as well as on a mixture of the two most abundant constitutional isomers of C(78) (C(2nu)-C(78) and D(3)-C(78)) and C(84) (D(2)-C(84), and D(2d)-C(84). These values, combined with the published data on the enthalpies of sublimation of each cluster, lead to the gas-phase enthalpies of formation, Delta(f)H(o)(m)(C(76), g) = (2911.6 +/- 37.9) kJ x mol(-1); Delta(f)H(o)(m)(C(78), g) = (2979.3 +/- 37.2) kJ x mol(-1), and Delta(f)H(o)(m)(C(84), (g)) = (3051.6 +/- 43.0) kJ x mol(-1), results that were found to compare well with those reported from density functional theory calculations. Values of enthalpies of atomization, strain energies, and the average C-C bond energy were also derived for each fullerene. A decreasing trend in the gas-phase enthalpy of formation and strain energy per carbon atom as the size of the cluster increases is found. This is the first experimental evidence that these fullerenes become more stable as they become larger. The derived experimental average C-C bond energy E(C-C) = 461.04 kJ x mol(-1) for fullerenes is close to the average bond energy E(C-C) = 462.8 kJ x mol(-1) for polycyclic aromatic hydrocarbons (PAHs).  相似文献   

3.
The complexes trans-[Rh(X)(XNC)(PPh 3) 2] (X = Cl, 1; Br, 2; SC 6F 5, 3; C 2Ph, 4; XNC = xylyl isocyanide) combine reversibly with molecular oxygen to give [Rh(X)(O 2)(XNC)(PPh 3) 2] of which [Rh(SC 6F 5)(O 2)(XNC)(PPh 3) 2] ( 7) and [Rh(C 2Ph)(O 2)(XNC)(PPh 3) 2] ( 8) are sufficiently stable to be isolated in crystalline form. Complexes 2, 3, 4, and 7 have been structurally characterized. Kinetic data for the dissociation of O 2 from the dioxygen adducts of 1- 4 were obtained using (31)P NMR to monitor changes in the concentration of [Rh(X)(O 2)(XNC)(PPh 3) 2] (X = Cl, Br, SC 6F 5, C 2Ph) resulting from the bubbling of argon through the respective warmed solutions (solvent chlorobenzene). From data recorded at temperatures in the range 30-70 degrees C, activation parameters were obtained as follows: Delta H (++) (kJ mol (-1)): 31.7 +/- 1.6 (X = Cl), 52.1 +/- 4.3 (X = Br), 66.0 +/- 5.8 (X = SC 6F 5), 101.3 +/- 1.8 (X = C 2Ph); Delta S (++) (J K (-1) mol (-1)): -170.3 +/- 5.0 (X = Cl), -120 +/- 13.6 (X = Br), -89 +/- 18.2 (X = SC 6F 5), -6.4 +/- 5.4 (X = C 2Ph). The values of Delta H (++) and Delta S (++) are closely correlated (R (2) = 0.9997), consistent with a common dissociation pathway along which the rate-determining step occurs at a different position for each X. Relative magnitudes of Delta H (++) are interpreted in terms of differing polarizabilities of ligands X.  相似文献   

4.
The CO exchange on cis-[M(CO)2X2]- with M = Ir (X = Cl, la; X = Br, 1b; X = I, 1c) and M = Rh (X = Cl, 2a; X = Br, 2b; X = I, 2c) was studied in dichloromethane. The exchange reaction [cis-[M(CO)2X2]- + 2*CO is in equilibrium cis-[M(*CO)2X2]- + 2CO (exchange rate constant: kobs)] was followed as a function of temperature and carbon monoxide concentration (up to 6 MPa) using homemade high gas pressure NMR sapphire tubes. The reaction is first order for both CO and cis-[M(CO)2X2]- concentrations. The second-order rate constant, k2(298) (=kobs)[CO]), the enthalpy, deltaH*, and the entropy of activation, deltaS*, obtained for the six complexes are respectively as follows: la, (1.08 +/- 0.01) x 10(3) L mol(-1) s(-1), 15.37 +/- 0.3 kJ mol(-1), -135.3 +/- 1 J mol(-1) K(-1); 1b, (12.7 +/- 0.2) x 10(3) L mol(-1) s(-1), 13.26 +/- 0.5 kJ mol(-1), -121.9 +/- 2 J mol(-1) K(-1); 1c, (98.9 +/- 1.4) x 10(3) L mol(-1) s(-1), 12.50 +/- 0.6 kJ mol(-1), -107.4 +/- 2 J mol(-1) K(-1); 2a, (1.62 +/- 0.02) x 10(3) L mol(-1) s(-1), 17.47 +/- 0.4 kJ mol(-1), -124.9 +/- 1 J mol(-1) K(-1); 2b, (24.8 +/- 0.2) x 10(3) L mol(-1) s(-1), 11.35 +/- 0.4 kJ mol(-1), -122.7 +/- 1 J mol(-1) K(-1); 2c, (850 +/- 120) x 10(3) L mol(-1), s(-1), 9.87 +/- 0.8 kJ mol(-1), -98.3 +/- 4 J mol(-1) K(-1). For complexes la and 2a, the volumes of activation were measured and are -20.9 +/- 1.2 cm3 mol(-1) (332.0 K) and -17.2 +/- 1.0 cm3 mol(-1) (330.8 K), respectively. The second-order kinetics and the large negative values of the entropies and volumes of activation point to a limiting associative, A, exchange mechanism. The reactivity of CO exchange follows the increasing trans effect of the halogens (Cl < Br < I), and this is observed on both metal centers. For the same halogen, the rhodium complex is more reactive than the iridium complex. This reactivity difference between rhodium and iridium is less marked for chloride (1.5: 1) than for iodide (8.6:1) at 298 K.  相似文献   

5.
The energetics of the phenolic O-H bond in the three hydroxybenzoic acid isomers and of the intramolecular hydrogen O-H- - -O-C bond in 2-hydroxybenzoic acid, 2-OHBA, were investigated by using a combination of experimental and theoretical methods. The standard molar enthalpies of formation of monoclinic 3- and 4-hydroxybenzoic acids, at 298.15 K, were determined as Delta(f)(3-OHBA, cr) = -593.9 +/- 2.0 kJ x mol(-1) and Delta(f)(4-OHBA, cr) = -597.2 +/- 1.4 kJ x mol(-1), by combustion calorimetry. Calvet drop-sublimation calorimetric measurements on monoclinic samples of 2-, 3-, and 4-OHBA, led to the following enthalpy of sublimation values at 298.15 K: Delta(sub)(2-OHBA) = 94.4 +/- 0.4 kJ x mol(-1), Delta(sub)(3-OHBA) = 118.3 +/- 1.1 kJ x mol(-1), and Delta(sub)(4-OHBA) = 117.0 +/- 0.5 kJ x mol(-1). From the obtained Delta(f)(cr) and Delta(sub) values and the previously reported enthalpy of formation of monoclinic 2-OHBA (-591.7 +/- 1.3 kJ x mol(-1)), it was possible to derive Delta(f)(2-OHBA, g) = -497.3 +/- 1.4 kJ x mol(-1), Delta(f)(3-OHBA, g) = -475.6 +/- 2.3 kJ x mol(-1), and Delta(f)(4-OHBA, cr) = -480.2 +/- 1.5 kJ x mol(-1). These values, together with the enthalpies of isodesmic and isogyric gas-phase reactions predicted by density functional theory (B3PW91/aug-cc-pVDZ, MPW1PW91/aug-cc-pVDZ, and MPW1PW91/aug-cc-pVTZ) and the CBS-QMPW1 methods, were used to derive the enthalpies of formation of the gaseous 2-, 3-, and 4-carboxyphenoxyl radicals as (2-HOOCC(6)H(4)O(*), g) = -322.5 +/- 3.0 kJ.mol(-1) Delta(f)(3-HOOCC(6)H(4)O(*), g) = -310.0 +/- 3.0 kJ x mol(-1), and Delta(f)(4-HOOCC(6)H(4)O(*), g) = -318.2 +/- 3.0 kJ x mol(-1). The O-H bond dissociation enthalpies in 2-OHBA, 3-OHBA, and 4-OHBA were 392.8 +/- 3.3, 383.6 +/- 3.8, and 380.0 +/- 3.4 kJ x mol(-1), respectively. Finally, by using the ortho-para method, it was found that the H- - -O intramolecular hydrogen bond in the 2-carboxyphenoxyl radical is 25.7 kJ x mol(-1), which is ca. 6-9 kJ x mol(-1) above the one estimated in its parent (2-OHBA), viz. 20.2 kJ x mol(-1) (theoretical) or 17.1 +/- 2.1 kJ x mol(-1) (experimental).  相似文献   

6.
The enthalpies of combustion and sublimation of 2,5-thiophenedicarboxylic acid [CASRN 4282-31-9] were measured by rotary-bomb combustion calorimetry and the method of transference in a saturated stream of nitrogen, and the gas-phase enthalpy of formation was determined, Delta(f)H(o)(m)(g) = -(632.6 +/- 2.2) kJ x mol(-1). Standard ab initio molecular orbital calculations at the G2(MP2) and G3(MP2) levels were performed, and a theoretical study on the molecular and electronic structure of the compound has been carried out. The three most stable conformers have been explicitly taken into account. The calculated enthalpy of formation averaged using three different isodesmic reactions, -631.1 kJ x mol(-1), is in very good agreement with the experimental value. A comparison of the substituent effect of the carboxylic groups in benzene and thiophene ring has been made. The relative stability obtained for the substitution of two H atoms by COOH in position 2,5- for thiophene and 1,4- for benzene involve the same energetic effects, DeltaDelta(f)H(o)(m)= -747.6 +/- 2.4 and -748.2 +/- 2.7 kJ x mol(-1), respectively.  相似文献   

7.
The energetics of the thermal dimerization of acenaphthylene to give Z- or E-heptacyclene was investigated. The standard molar enthalpy of the formation of monoclinic Z- and E-heptacyclene isomers at 298.15 K was determined as Delta(f)H(m)o (E-C24H16, cr) = 269.3 +/- 5.6 kJ x mol(-1) and Delta(f)H(m)o (Z-C24H16, cr) = 317.7 +/- 5.6 kJ x mol(-1), respectively, by microcombustion calorimetry. The corresponding enthalpies of sublimation, Delta(sub)H(m)o (E-C24H16) = (149.0 +/- 3.1) kJ x mol(-1) and Delta(sub)H(m)o (Z-C24H16) = (128.5 +/- 2.3) kJ x mol(-1) were also obtained by Knudsen effusion and Calvet-drop microcalorimetry methods, leading to Delta(f)H(m)o (E-C24H16, g) = (418.3 +/- 6.4) kJ x mol(-1) and Delta(f)H(m)o (Z-C24H16, g) = (446.2 +/- 6.1) kJ x mol(-1), respectively. These results, in conjunction with the reported enthalpies of formation of solid and gaseous acenaphthylene, and the entropies of acenaphthylene and both hepatcyclene isomers obtained by the B3LYP/6-31G(d,p) method led to the conclusion that at 298.15 K the thermal dimerization of acenaphthylene is considerably exothermic and exergonic in the solid and gaseous states (although more favorable when the E isomer is the product), suggesting that the nonobservation of the reaction under these conditions is of kinetic nature. A full determination of the molecular and crystal structure of the E dimer by X-ray diffraction is reported for the first time. Finally, molecular dynamics computer simulations on acenaphthylene and the heptacyclene solids were carried out and the results discussed in light of the corresponding structural and Delta(sub)H(m)o data experimentally obtained.  相似文献   

8.
A rotating-bomb combustion calorimeter specifically designed for the study of sulfur-containing compounds [J. Chem. Thermodyn. 1999, 31, 635] has been used for the determination of the enthalpy of formation of thiane sulfone, 4, Delta(f)H(o) m(g) = -394.8 +/- 1.5 kJ x mol(-1). This value stands in stark contrast with the enthalpy of formation reported for thiane itself, Delta(f)H(o) m(g) = -63.5 +/- 1.0 kJ x mol(-1), and gives evidence of the increased electronegativity of the sulfur atom in the sulfonyl group, which leads to significantly stronger C-SO2 bonds. Given the known enthalpy of formation of atomic oxygen in the gas phase, Delta(f)H(o) m(O,g) = +249.18 kJ x mol(-1), and the reported bond dissociation energy for the S=O bond in alkyl sulfones, BDE(S=O) = +470.0 kJ x mol(-1), it was possible to estimate the enthalpy of formation of thiane sulfoxide, 5, a hygroscopic compound not easy to use in experimental calorimetric measurements, Delta(f)H(o) m(5) = -174.0 kJ x mol(-1). The experimental enthalpy of formation of both 4 and 5 were closely reproduced by theoretical calculations at the G2(MP2)+ level, Delta(f)H(o) m(4) = -395.0 kJ x mol(-1) and Delta(f)H(o) m(5) = -178.0 kJ x mol(-1). Finally, calculated G2(MP2)+ values for the bond dissociation energy of the S=O bond in cyclic sulfoxide 5 and sulfone 4 are +363.7 and +466.2 kJ x mol(-1), respectively.  相似文献   

9.
In this work, the aromaticity of pyracylene (2) was investigated from an energetic point of view. The standard enthalpy of hydrogenation of acenaphthylene (1) to acenaphthene (3) at 298.15 K was determined to be minus sign(114.5 +/- 4.2) kJ x mol(-1) in toluene solution and minus sign(107.9 +/- 4.2) kJ x mol(-1) in the gas phase, by combining results of combustion and reaction-solution calorimetry. A direct calorimetric measurement of the standard enthalpy of hydrogenation of pyracylene (2) to pyracene (4) in toluene at 298.15 K gave -(249.9 plus minus 4.6) kJ x mol(-1). The corresponding enthalpy of hydrogenation in the gas phase, computed from the Delta(f)H(o)m(cr) and DeltaH(o)m(sub) values obtained in this work for 2 and 4, was -(236.0 +/- 7.0) kJ x mol(-1). Molecular mechanics calculations (MM3) led to Delta(hyd)H(o)m(1,g) = -110.9 kJ x mol(-1) and Delta(hyd)H(o)m(2,g) = -249.3 kJ x mol(-1) at 298.15 K. Density functional theory calculations [B3LYP/6-311+G(3d,2p)//B3LYP/6-31G(d)] provided Delta(hyd)H(o)m(2,g) = -(244.6 +/- 8.9) kJ x mol(-1) at 298.15 K. The results are put in perspective with discussions concerning the "aromaticity" of pyracylene. It is concluded that, on energetic grounds, pyracylene is a borderline case in terms of aromaticity/antiaromaticity character.  相似文献   

10.
Combustion calorimetry studies were used to determine the standard molar enthalpies of formation of o-, m-, and p-cresols, at 298.15 K, in the condensed state as Delta(f)H(m) degrees (o-CH(3)C(6)H(4)OH,cr) = -204.2 +/- 2.7 kJ.mol(-1), Delta(f)H(m) degrees (m-CH(3)C(6)H(4)OH,l) = -196.6 +/- 2.1 kJ.mol(-1), and Delta(f)H(m) degrees (p-CH(3)C(6)H(4)OH,cr) = -202.2 +/- 3.0 kJ.mol(-1). Calvet drop calorimetric measurements led to the following enthalpy of sublimation and vaporization values at 298.15 K: Delta(sub)H(m) degrees (o-CH(3)C(6)H(4)OH) = 73.74 +/- 0.46 kJ.mol(-1), Delta(vap)H(m) degrees (m-CH(3)C(6)H(4)OH) = 64.96 +/- 0.69 kJ.mol(-1), and Delta(sub)H(m) degrees (p-CH(3)C(6)H(4)OH) = 73.13 +/- 0.56 kJ.mol(-1). From the obtained Delta(f)H(m) degrees (l/cr) and Delta(vap)H(m) degrees /Delta(sub)H(m) degrees values, it was possible to derive Delta(f)H(m) degrees (o-CH(3)C(6)H(4)OH,g) = -130.5 +/- 2.7 kJ.mol(-1), Delta(f)H(m) degrees (m-CH(3)C(6)H(4)OH,g) = -131.6 +/- 2.2 kJ.mol(-1), and Delta(f)H(m) degrees (p-CH(3)C(6)H(4)OH,g) = -129.1 +/- 3.1 kJ.mol(-1). These values, together with the enthalpies of isodesmic and isogyric gas-phase reactions predicted by the B3LYP/cc-pVDZ, B3LYP/cc-pVTZ, B3P86/cc-pVDZ, B3P86/cc-pVTZ, MPW1PW91/cc-pVTZ, CBS-QB3, and CCSD/cc-pVDZ//B3LYP/cc-pVTZ methods, were used to obtain the differences between the enthalpy of formation of the phenoxyl radical and the enthalpies of formation of the three methylphenoxyl radicals: Delta(f)H(m) degrees (C(6)H(5)O*,g) - Delta(f)H(m) degrees (o-CH(3)C(6)H(4)O*,g) = 42.2 +/- 2.8 kJ.mol(-1), Delta(f)H(m) degrees (C(6)H(5)O*,g) - Delta(f)H(m) degrees (m-CH(3)C(6)H(4)O*,g) = 36.1 +/- 2.4 kJ.mol(-1), and Delta(f)H(m) degrees (C(6)H(5)O*,g) - Delta(f)H(m) degrees (p-CH(3)C(6)H(4)O*,g) = 38.6 +/- 3.2 kJ.mol(-1). The corresponding differences in O-H bond dissociation enthalpies were also derived as DH degrees (C(6)H(5)O-H) - DH degrees (o-CH(3)C(6)H(4)O-H) = 8.1 +/- 4.0 kJ.mol(-1), DH degrees (C(6)H(5)O-H) - DH degrees (m-CH(3)C(6)H(4)O-H) = 0.9 +/- 3.4 kJ.mol(-1), and DH degrees (C(6)H(5)O-H) - DH degrees (p-CH(3)C(6)H(4)O-H) = 5.9 +/- 4.5 kJ.mol(-1). Based on the differences in Gibbs energies of formation obtained from the enthalpic data mentioned above and from published or calculated entropy values, it is concluded that the relative stability of the cresols varies according to p-cresol < m-cresol < o-cresol, and that of the radicals follows the trend m-methylphenoxyl < p-methylphenoxyl < o-methylphenoxyl. It is also found that these tendencies are enthalpically controlled.  相似文献   

11.
Ozone reactions with XO(2)(-) (X = Cl or Br) are studied by stopped-flow spectroscopy under pseudo-first-order conditions with excess XO(2)(-). The O(3)/XO(2)(-) reactions are first-order in [O(3)] and [XO(2)(-)], with rate constants k(1)(Cl) = 8.2(4) x 10(6) M(-1) s(-1) and k(1)(Br) = 8.9(3) x 10(4) M(-1) s(-1) at 25.0 degrees C and mu = 1.0 M. The proposed rate-determining step is an electron transfer from XO(2)(-) to O(3) to form XO(2) and O(3)(-). Subsequent rapid reactions of O(3)(-) with general acids produce O(2) and OH. The OH radical reacts rapidly with XO(2)(-) to form a second XO(2) and OH(-). In the O(3)/ClO(2)(-) reaction, ClO(2) and ClO(3)(-) are the final products due to competition between the OH/ClO(2)(-) reaction to form ClO(2) and the OH/ClO(2) reaction to form ClO(3)(-). Unlike ClO(2), BrO(2) is not a stable product due to its rapid disproportionation to form BrO(2)(-) and BrO(3)(-). However, kinetic spectra show that small but observable concentrations of BrO(2) form within the dead time of the stopped-flow instrument. Bromine dioxide is a transitory intermediate, and its observed rate of decay is equal to half the rate of the O(3)/BrO(2)(-) reaction. Ion chromatographic analysis shows that O(3) and BrO(2)(-) react in a 1/1 ratio to form BrO(3)(-) as the final product. Variation of k(1)(X) values with temperature gives Delta H(++)(Cl) = 29(2) kJ mol(-1), DeltaS(++)(Cl) = -14.6(7) J mol(-1) K(-1), Delta H(++)(Br) = 54.9(8) kJ mol(-1), and Delta S(++)(Br) = 34(3) J mol(-1) K(-1). The positive Delta S(++)(Br) value is attributed to the loss of coordinated H(2)O from BrO(2)(-) upon formation of an [O(3)BrO(2)(-)](++) activated complex.  相似文献   

12.
The energetics of the phenolic O-H bond in a series of 2- and 4-HOC 6H 4C(O)Y (Y = H, CH3, CH 2CH=CH2, C[triple bond]CH, CH2F, NH2, NHCH 3, NO2, OH, OCH3, OCN, CN, F, Cl, SH, and SCH3) compounds and of the intramolecular O...H hydrogen bond in 2-HOC 6H 4C(O)Y, was investigated by using a combination of experimental and theoretical methods. The standard molar enthalpies of formation of 2-hydroxybenzaldehyde (2HBA), 4-hydroxybenzaldehyde (4HBA), 2'-hydroxyacetophenone (2HAP), 2-hydroxybenzamide (2HBM), and 4-hydroxybenzamide (4HBM), at 298.15 K, were determined by micro- or macrocombustion calorimetry. The corresponding enthalpies of vaporization or sublimation were also measured by Calvet drop-calorimetry and Knudsen effusion measurements. The combination of the obtained experimental data led to Delta f H m (o)(2HBA, g) = -238.3 +/- 2.5 kJ.mol (-1), DeltafHm(o)(4HBA, g) = -220.3 +/- 2.0 kJ.mol(-1), Delta f H m (o)(2HAP, g) = -291.8 +/- 2.1 kJ.mol(-1), DeltafHm(o)(2HBM, g) = -304.8 +/- 1.5 kJ.mol (-1), and DeltafHm(o) (4HBM, g) = -278.4 +/- 2.4 kJ.mol (-1). These values, were used to assess the predictions of the B3LYP/6-31G(d,p), B3LYP/6-311+G(d,p), B3LYP/aug-cc-pVDZ, B3P86/6-31G(d,p), B3P86/6-311+G(d,p), B3P86/aug-cc-pVDZ, and CBS-QB3 methods, for the enthalpies of a series of isodesmic gas phase reactions. In general, the CBS-QB3 method was able to reproduce the experimental enthalpies of reaction within their uncertainties. The B3LYP/6-311+G(d,p) method, with a slightly poorer accuracy than the CBS-QB3 approach, achieved the best performance of the tested DFT models. It was further used to analyze the trends of the intramolecular O...H hydrogen bond in 2-HOC 6H 4C(O)Y evaluated by the ortho-para method and to compare the energetics of the phenolic O-H bond in 2- and 4-HOC 6H 4C(O)Y compounds. It was concluded that the O-H bond "strength" is systematically larger for 2-hydroxybenzoyl than for the corresponding 4-hydroxybenzoyl isomers mainly due to the presence of the intramolecular O...H hydrogen bond in the 2-isomers. The observed differences are, however, significantly dependent on the nature of the substituent Y, in particular, when an intramolecular H-bond can be present in the radical obtained upon cleavage of the O-H bond.  相似文献   

13.
The 0 K dissociative ionization onsets of C2H3X --> C2H3(+) + X (X = Cl, I) are measured by threshold photoelectron-photoion coincidence spectroscopy. The heats of formation of C2H3Cl (Delta H(f,0K)(0) = 30.2 +/- 3.2 kJ mol(-1) and Delta(H f,298K)(0) = 22.6 +/- 3.2 kJ mol(-1)) and C2H3I (Delta(H f,0K)(0) = 140.2 +/- 3.2 kJ mol(-1) and Delta(H f,298K)(0) = 131.2 +/- 3.2 kJ mol(-1)) and C- X bond dissociation enthalpies as well as those of their ions are determined. The data help resolve a longstanding discrepancy among experimental values of the vinyl chloride heat of formation, which now agrees with the latest theoretical determination. The reported vinyl iodide heat of formation is the first reliable experimental determination. Additionally, the adiabatic ionization energy of C2H3I (9.32 +/- 0.01 eV) is measured by threshold photoelectron spectroscopy.  相似文献   

14.
Structural and thermodynamic properties of crystal hexagonal calcium apatites, Ca10(PO4)6(X)2 (X = OH, F, Cl, Br), were investigated using an all-atom Born-Huggins-Mayer potential by a molecular dynamics technique. The accuracy of the model at room temperature and atmospheric pressure was checked against crystal structural data, with maximum deviations of ca. 4% for the haloapatites and 8% for hydroxyapatite. The standard molar lattice enthalpy, delta(lat)H298(o), of the apatites was calculated and compared with previously published experimental results, the agreement being better than 2%. The molar heat capacity at constant pressure, C(p,m), in the range 298-1298 K, was estimated from the plot of the molar enthalpy of the crystal as a function of temperature, H(m) = (H(m,298) - 298C(p,m)) + C(p,m)T, yielding C(p,m) = 694 +/- 68 J x mol(-1) x K(-1), C(p,m) = 646 +/- 26 J x mol(-1) x K(-1), C(p,m) = 530 +/- 34 J x mol(-1) x K(-1), and C(p,m) = 811 +/- 42 J x mol(-1) x K(-1) for hydroxy-, fluor-, chlor-, and bromapatite, respectively. High-pressure simulation runs, in the range 0.5-75 kbar, were performed in order to estimate the isothermal compressibility coefficient, kappaT, of those compounds. The deformation of the compressed solids is always elastically anisotropic, with BrAp exhibiting a markedly different behavior from those displayed by HOAp and ClAp. High-pressure p-V data were fitted to the Parsafar-Mason equation of state with an accuracy better than 1%.  相似文献   

15.
Purified LiAlH4 reacts with fluorinated alcohols HORF to give LiAl(ORF)4 (RF=-CH(CF3)2, 2a; -C(CH3)(CF3)2, 2b; -C(CF3)3, 2c) in 77 to 90% yield. The crude lithium aluminates LiAl(ORF)4 react metathetically with AgF to give the silver aluminates AgAl(ORF)4 (RF=-CH(CF3)2, 3a; -C(CH3)(CF3)2, 3b; -C(CF3)3, 3c) in almost quantitative yield. The solid-state structures of solvated 3a-c showed that the silver cation is only weakly coordinated (CN(Ag)=6-10; CN = coordination number) by the solvent and/or weak cation - anion contacts Ag-X (X=O, F, Cl, C). The strength of the Ag-X contacts of 3a-c was analysed by Brown's bond-valence method and then compared with other silver salts of weakly coordinating anions (WCAs), for example [CB11H6Cl6]- and [M(OTeF5)n]- (M=B, Sb, n=4, 6). Based on this quantitative picture we showed that the Al[OC(CF3)3]4 anion is one of the most weakly coordinating anions known. Moreover, the AgAl(ORF)4 species are certainly the easiest WCAs to access preparatively (20 g in two days), additionally at low cost. The Al-O bond length of Al(ORF)4- is shortest in the sterically congested Al[OC(CF3)3]4- anion-which is stable in H2O and aqueous HNO3 (35 weight%)--and indicates a strong and highly polar Al-O bond that is resistant towards heterolytic alkoxide ion abstraction. This observation was supported by a series of HF-DFT calculations of OR-, Al(OR)3 and Al(OR)4- at the MPW1PW91 and B3LYP levels (R= CH3, CF3, C(CF3)3). The alkoxide ion affinity (AIA) is highest for R=CF3 (AlA=384 +/- 9 kJ x mol(-1)) and R= C(CF3)3 (AIA=390 +/- 3 kJ x mol(-1)), but lowest for R=CH3 (AIA=363 +/- 7 kJ X mol(-1)). The gaseous AL(ORF)4-anions are stable against the action of the strong Lewis acid ALF3(g) by 88.5 +/- 2.5 (RF=CF3) and 63 +/- 12 kJ X mol(-1) (RF=C(CF3)3), while AL(OCH3)4- decomposes with -91 +/- 2 kJ X mol(-1). Therefore the presented fluorinated aluminates AL(ORF)4- appear to be ideal candidates when large and resistant WCAs are needed, for example, in cationic homogenous catalysis, for highly electrophilic cations or for weak cationic Lewis acid/base complexes.  相似文献   

16.
[reaction: see text] This study is a multinational, multidisciplinary contribution to the thermochemistry of dimethyl1,4-cubanedicarboxylate and the corresponding isomeric, cuneane derivative and provides both structural and thermochemical information regarding the rearrangement of dimethyl 1,4-cubanedicarboxylate to dimethyl 2,6-cuneanedicarboxylate. The enthalpies of formation in the condensed phase at T = 298.15 K of dimethyl 1,4-cubanedicarboxylate (dimethyl pentacyclo[4.2.0.0.(2,5)0.(3,8)0(4,7)]octane-1,4-dicarboxylate) and dimethyl 2,6-cuneanedicarboxylate (dimethyl pentacyclo[3.3.0.0.(2,4)0.(3,7)0(6,8)]octane-2,6-dicarboxylate) have been determined by combustion calorimetry, delta(f) H(o)m (cr)/kJ x mol(-1) = -232.62 +/- 5.84 and -413.02 +/- 5.16, respectively. The enthalpies of sublimation have been evaluated by combining vaporization enthalpies evaluated by correlation-gas chromatography and fusion enthalpies measured by differential scanning calorimetry and adjusted to T = 298.15 K, delta(cr) (g)Hm (298.15 K)/kJ x mol(-1) = 117.2 +/- 3.9 and 106.8 +/- 3.0, respectively. Combination of these two enthalpies resulted in delta(f) H(o)m (g., 298.15 K)/kJ x mol(-1) of -115.4 +/- 7.0 for dimethyl 1,4-cubanedicarboxylate and -306.2 +/- 6.0 for dimethyl 2,6-cuneanedicarboxylate. These measurements, accompanied by quantum chemical calculations, resulted in values of delta(f) Hm (g, 298.15 K) = 613.0 +/- 9.5 kJ x mol(-1) for cubane and 436.4 +/- 8.8 kJ x mol(-1) for cuneane. From these enthalpies of formation, strain enthalpies of 681.0 +/- 9.8 and 504.4 +/- 9.1 kJ x mol(-1) were calculated for cubane and cuneane by means of isodesmic reactions, respectively. Crystals of dimethyl 2,6-cuneanedicarboxylate are disordered; the substitution pattern and structure have been confirmed by determination of the X-ray crystal structure of the corresponding diacid.  相似文献   

17.
Rotationally resolved infrared emission spectra of HCl(v=1-3) in the reaction of Cl+CH3SH, initiated with radiation from a laser at 308 nm, are detected with a step-scan Fourier-transform spectrometer. Observed rotational temperature of HCl(v=1-3) decreases with duration of reaction due to collisional quenching; a short extrapolation to time zero based on data in the range 0.25-4.25 micros yields a nascent rotational temperature of 1150+/-80 K. The rotational energy averaged for HCl(v=1-3) is 8.2+/-0.9 kJ mol(-1), yielding a fraction of available energy going into rotation of HCl, fr=0.10+/-0.01, nearly identical to that of the reaction Cl+H(2)S. Observed temporal profiles of the vibrational population of HCl(v=1-3) are fitted with a kinetic model of formation and quenching of HCl(v=1-3) to yield a branching ratio (68+/-5):(25+/-4):(7+/-1) for formation of HCl(v=1):(v=2):(v=3) from the title reaction and its thermal rate coefficient k(2a)=(2.9+/-0.7)x10(-10) cm(3) molecule(-1) s(-1). Considering possible estimates of the vibrational population of HCl(v=0) based on various surprisal analyses, we report an average vibrational energy 36+/-6 kJ mol(-1) for HCl. The fraction of available energy going into vibration of HCl is f(v)=0.45+/-0.08, significantly greater than a value fv=0.33+/-0.06 determined previously for Cl+H2S. Reaction dynamics of Cl+H(2)S and Cl+CH3SH are compared; the adduct CH3S(Cl)H is likely more transitory than the adduct H(2)SCl.  相似文献   

18.
The ground-state rotational spectra of eight isotopomers of a complex formed by water and dibromine in the gas phase were observed by pulsed-jet, Fourier transform microwave spectroscopy. The spectroscopic constants B(0), C(0), delta(J), delta(JK), chi(aa)(Br(x)) (x=i for inner, o for outer), [chi(bb)(Br(x))-chi(cc)(Br(x))] and M(bb)(Br(x)) were determined for H(2)O...(79)Br(79)Br, H(2)O...(81)Br(79)Br, H(2)O...(79)Br(81)Br, H(2)O...(81)Br(81)Br, D(2)O...(79)Br(81)Br and D(2)O...(81)Br(81)Br. For the isotopomers HDO...(79)Br(81)Br and HDO...(81)Br(81)Br, only (B(0) + C(0))/2, delta(J), the chi(aa)(Br(x)) and M(bb)(Br(x)) were determinable. The spectroscopic constants were interpreted on the basis of several models of the complex to give information about its geometry, binding strength and the extent of electronic rearrangement on complex formation. The molecule H(2)O...Br(2) has C(s) symmetry with a pyramidal configuration at O. The zero-point effective quantities r(O...Br(i))=2.8506(1) A and phi(0)=46.8(1), where phi is the angle between the C(2) axis of H(2)O and the O...Br-Br internuclear axis, were obtained under the assumption of monomer geometries unchanged by complexation. Ab initio calculations, carried out at the aug-cc-pVDZ/MP2 level of theory, gave the equilibrium values r(e)(O...Br(i))=2.7908 A and phi(e)=45.7 degrees and confirmed the collinearity of the O...Br-Br nuclei. The potential energy function V(phi), also determined ab initio, showed that the wavenumber required for inversion of the configuration at O in the zero-point state is only 9 cm(-1). By interpreting the Br nuclear quadrupole coupling constants, the fractions delta(O-->Br(i))=0.004(5) and delta (Br(i)-->Br(o))=0.050(2) of an electron were determined to be transferred from O to Br(i) and Br(i) to Br(o), respectively, when the complex is formed. The complex is relatively weak, as indicated by the small value k(sigma)=9.8(2) N m(-1) of the intermolecular stretching force constant obtained from delta(J). A comparison of the properties, similarly determined, of H(2)O...F(2), H(2)O...Cl(2), H(2)O...Br(2), H(2)O...BrCl, H(2)O...ClF and H(2)O...ICl is presented.  相似文献   

19.
Kinetics for reactions between thiocyanate and trans-Au(CN)(2)Cl(2)(-), trans-Au(CN)(2)Br(2)(-), and trans-Au(NH(3))(2)Cl(2)(+) in an acidic, 1.00 M perchlorate aqueous medium have been studied by use of conventional and diode-array UV/vis spectroscopy and high-pressure and sequential-mixing stopped-flow spectrophotometry. Initial, rapid formation of mixed halide-thiocyanate complexes of gold(III) is followed by slower reduction to Au(CN)(2)(-) and Au(NH(3))(2)(+), respectively. This is an intermolecular process, involving attack on the complex by outer-sphere thiocyanate. Second-order rate constants at 25.0 degrees C for reduction of trans-Au(CN)(2)XSCN(-) are (6.9 +/- 1.1) x 10(4) M(-)(1) s(-)(1) for X = Cl and (3.1 +/- 0.7) x 10(3) M(-)(1) s(-)(1) for X = Br. For reduction of trans-Au(CN)(2)(SCN)(2)(-) the second-order rate constant at 25.0 degrees C is (3.1 +/- 0.1) x 10(2) M(-)(1) s(-)(1) and the activation parameters are DeltaH() = (55 +/- 3) x 10(2) kJ mol(-)(1), DeltaS() = (-17.8 +/- 0.8) J K(-)(1) mol(-)(1), and DeltaV() = (-4.6 +/- 0.5) cm(3) mol(-)(1). The activation volume for substitution of one chloride on trans-Au(NH(3))(2)Cl(2)(+) is (-4.5 +/- 0.5) cm(3) mol(-)(1), and that for reduction of trans-Au(NH(3))(2)(SCN)(2)(+) (4.6 +/- 0.9) cm(3) mol(-)(1). The presence of pi-back-bonding cyanide ligands stabilizes the transition states for both substitution and reductive elimination reactions compared to ammine. In particular, complexes trans-Au(CN)(2)XSCN(-) with an unsymmetric electron distribution along the X-Au-SCN axis are reduced rapidly. The observed entropies and volumes of activation reflect large differences in the transition states for the reductive elimination and substitution processes, respectively, the former being more loosely bound, more sensitive to solvational changes, and probably not involving any large changes in the inner coordination sphere. A transition state with an S-S interaction between attacking and coordinated thiocyanate is suggested for the reduction. The stability constants for formation of the very short-lived complex trans-Au(CN)(2)(SCN)(2)(-) from trans-Au(CN)(2)X(SCN)(-) (X = Cl, Br) by replacement of halide by thiocyanate prior to reduction can be calculated from the redox kinetics data to be K(Cl,2) = (3.8 +/- 0.8) x 10(4) and K(Br,2) = (1.1 +/- 0.4) x 10(2).  相似文献   

20.
We report the study of binuclear Ln(III) chelates of OHEC (OHEC=octaazacyclohexacosane-1,4,7,10,14,17,20,23-octaacetate). The interconversion between two isomeric forms, which occurs in aqueous solution, has been studied by NMR, UV/Vis, EPR, and luminescence spectroscopy, as well as by classical molecular dynamics (MD) simulations. For the first time we have characterized an isomerization equilibrium for a Ln(III) polyaminocarboxylate complex (Ln(III)=Y, Eu, Gd and Tb) in which the metal centre changes its coordination number from nine to eight, such that: [Ln(2)(ohec)(H(2)O)(2)](2-) r<==>[Ln(2)(ohec)](2-)+2 H(2)O. The variable temperature and pressure NMR measurements conducted on this isomerization reaction give the following thermodynamic parameters for Eu(III): K(298)=0.42+/-0.01, DeltaH(0)=+4.0+/-0.2 kJ mol(-1), DeltaS(0)=+6.1+/-0.5 J K(-1) mol(-1) and DeltaV(0)=+3.2+/-0.2 cm(3) mol(-1). The isomerization is slow and the corresponding kinetic parameters obtained by NMR spectroscopy are: k(298)(is)=73.0+/-0.5 s(-1), DeltaH++(is)=75.3+/-1.9 kJ mol(-1), DeltaS++(is)= +43.1+/-5.8 J K(-1) mol(-1) and DeltaV++(is)=+7.9+/-0.7 cm(3) mol(-1). Variable temperature and pressure (17)O NMR studies have shown that water exchange in [Gd(2)(ohec)(H(2)O)(2)](2-) is slow, k(298)(ex)=(0.40+/-0.02)x10(6) s(-1), and that it proceeds through a dissociative interchange I(d) mechanism, DeltaV( not equal )=+7.3+/-0.3 cm(3) mol(-1). The anisotropy of this oblong binuclear complex has been highlighted by MD simulation calculations of different rotational correlation times. The rotational correlation time directed on the Gd-Gd axis is 24 % longer than those based on the axes orthogonal to the Gd-Gd axis. The relaxivity of this binuclear complex has been found to be low, since 1) only [Gd(2)(ohec)(H(2)O)(2)](2-), which constitutes 70 % of the binuclear complex, contributes to the inner-sphere relaxivity and 2) the anisotropy of the complex prevents water molecules from having complete access to both Gd(III) cages; this decreases the outer-sphere relaxivity. Moreover, EPR measurements for the Gd(III) and for the mixed Gd(III)/Y(III) binuclear complexes have clearly shown that the two Gd(III) centres interact intramolecularly; this enhances the electronic relaxation of the Gd(III) electron spins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号