首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigate the particle size dependence of the relaxivity of hydrogen protons in an aqueous solution of iron oxide (Fe3O4) nanoparticles coated in silica for biocompatibility. The T1 and T2 relaxation times for various concentrations of silica-coated nanoparticles were determined by a magnetic resonance scanner. We find that the relaxivity increased linearly with increasing particle size. The T2 relaxivity (R2) is more than 50 times larger than the T1 relaxivity (R1) for the nanoparticle contrast agent, which reflects the fact that the T2 relaxation is mainly influenced by outer sphere processes. The high R2/R1 ratio demonstrates that silica-coated iron oxide nanoparticles may serve as a T2 contrast agents in magnetic resonance imaging with high efficacy.  相似文献   

2.
The nanoparticles containing thermosensitive and magnetic properties were investigated for their potential use as a novel drug carrier for targeted and controlled release drug delivery system. These thermosensitive and magnetic nanoparticles were prepared by grafting thermosensitive poly (N-isopropylacrylamide) (PNIPAM) on the surface of silica (SiO2)-coated Fe3O4 nanoparticles with the particle size of 18.8 ± 1.6 nm. Adsorption and desorption behavior of bovine serum albumin (BSA) on the surface of PNIPAM-grafted SiO2/Fe3O4 nanoparticles was studied, and the results indicated that these nanoparticles were able to absorb protein at temperature above the lower critical solution temperature (LCST) and to be desorbed below the LCST. Cytotoxicity studies conducted on Chinese hamster ovary (CHO-K1) cells using methyl tetrazolium (MTT) assays revealed that cell viability of 1 mg/mL PNIPAM-grafted nanoparticles was slightly decreased after 24 h of incubation as compared to the lower concentration of nanoparticles. Furthermore, the concentration of 0.5 mg/mL PNIPAM-grafted nanoparticles was totally biocompatible for 48 h, but had low cytotoxicity after 72 h of incubation. These PNIPAM-grafted nanoparticles did not induce morphological change in their cellularity after exposure for 24 and 108 h. These results demonstrate that PNIPAM-grafted nanoparticles are biocompatible and have potential use as drug carriers.  相似文献   

3.
Using the thermal decomposition of organometallics method we have synthesized high-quality, iron oxide nanoparticles of tailorable size up to ∼15 nm and transferred them to a water phase by coating with a biocompatible polymer. The magnetic behavior of these particles was measured and fit to a log-normal distribution using the Chantrell method and their polydispersity was confirmed to be very narrow. By performing calorimetry measurements with these monodisperse particles we have unambiguously demonstrated, for the first time, that at a given frequency, heating rates of superparamagnetic particles are dependent on particle size, in agreement with earlier theoretical predictions.  相似文献   

4.
A selective functionalization of dopamine amino group with the photoluminescent 7-nitroben-zofurazan was achieved through a one-pot protection-functionalization-deprotection sequence. The resulting fluorescent catecholic ligand was used as a capping agent for iron oxide nanoparticles thus obtaining photoluminescent magnetic nanoparticles (PL-MNPs). The PL-MNPs were then embedded into PLGA-b-PEG polymeric nanocarriers which quenched the emission of the capping agent. Full recovery of fluorescence was observed after disassembling the polymeric layer of the nanoparticle, thus supporting the use of PL-MNPs as a multifunctional system for targeted drug delivery.  相似文献   

5.
Iron oxide nanoparticles (IONPs) were prepared via aqueous synthesis which combines alkaline co-precipitation (CP) of ferric and ferrous precursors with mild hydrothermal (HT) treatment without cupping agents (CA). In this novel synthesis route, CP + HT, we found the optimal synthesis conditions to obtain IONPs without a second phase and with the size larger than in standard CP: the equal number of Fe(II) and Fe(III) ions are co-precipitated with 6 M ammonia and further HT treated in mild conditions (120 °C for 24 h) without CA. The IONPs obtained by novel CP + HT route had faceted rectangular morphology, a mean TEM diameter of 21.5 ± 6.3 nm, a hydrodynamic diameter of 30.2 ± 9.1 nm and a zeta potential at pH 4 of 48.2 ± 0.6 mV. After the subsequent oxidation step, the final product (IONPs) was studied by XRD, FTIR and XPS, which confirmed the desired structure of γ-Fe2O3. Importantly, this synthesis was especially planned for the preparation of IONPs for biomedical applications. Thus, our novel synthesis was designed to be compliant with the regulations of nano-safety: no special atmosphere, no complex multistep size separation, no organic solvents or solvent exchange, no CA and their washing and the use of low temperature in the final optimised conditions. In addition, this simple synthesis route combines the CP and HT methods, which are both proven to be scalable. Moreover, repeatability and reproducibility of the optimal CP + HT synthesis were confirmed on the lab-scale; more than 100 repetitions with different dishes, different operators and different batches of chemicals were performed.  相似文献   

6.
Monodisperse iron oxide nanoparticles (NPs) of 4 nm were obtained through high-temperature solution phase reaction of iron (III) acetylacetonate with 1, 2-hexadecanediol in the presence of oleic acid and oleylamine. The as-synthesized iron oxide nanoparticles have been characterized by X-ray diffraction, transmission electron microscopy, Mössbauer spectroscopy and magnetic measurements. The species obtained were Fe3O4 and/or $\upgamma$ -Fe2O3. These NPs are superparamagnetic at room temperature and even though the reduced particle size they show a high saturation magnetization (MS ≈ 90 emu/g).  相似文献   

7.
Heating rates generated by superparamagnetic particles deteriorate quickly with particle polydispersity. We prepared highly uniform, monodisperse, single-crystal magnetite nanoparticles of tailorable size via organometallic decomposition. As-synthesized nanocrystals were coated with phospholipids to form biocompatible magnetoliposomes. Modeling of AC-magnetic field parameters indicates that 11 nm nanocrystals have maximum heating rates within the biologically safe frequency range.  相似文献   

8.
Versatile ferrofluids based on polyethylene glycol coated iron oxide nanoparticles were obtained by a facile protocol and thoroughly characterized. Superparamagnetic iron oxide nanoparticles synthesized using a modified forced hydrolysis method were functionalized with polyethylene glycol silane (PEG silane), precipitated and dried. These functionalized particles are dispersable in a range of solvents and concentrations depending on the desired properties. Examples of tunable properties are magnetic behavior, optical and magneto-optical response, thermal features and rheological behavior. As such, PEG silane functionalized particles represent a platform for the development of new materials that have broad applicability in e.g. biomedical, industrial or photonic environments. Magnetic, optical, magneto-optical, thermal and rheological properties of several ferrofluids based on PEG coated particles with different concentrations of particles dispersed in low molecular mass polyethylene glycol were investigated, establishing the applicability of such materials.  相似文献   

9.
Iron oxide nanoparticles are the most popular magnetic nanoparticles used in biomedical applications due to their low cost, low toxicity, and unique magnetic property. Magnetic iron oxide nanoparticles, including magnetite (Fe304) and maghemite (γ-Fe203), usually exhibit a superparamagnetic property as their size goes smaller than 20 nm, which are often denoted as superparamagnetic iron oxide nanoparticles (SPIONs) and utilized for drug delivery, diagnosis, therapy, and etc. This review article gives a brief introduction on magnetic iron oxide nanoparticles in terms of their fundamentals of magnetism, magnetic resonance imaging (MRI), and drug delivery, as well as the synthesis approaches, surface coating, and application examples from recent key literatures. Because the quality and surface chemistry play important roles in biomedical applications, our review focuses on the synthesis approaches and surface modifications of iron oxide nanopar- ticles. We aim to provide a detailed introduction to readers who are new to this field, helping them to choose suitable synthesis methods and to optimize the surface chemistry of iron oxide nanoparticles for their interests.  相似文献   

10.
11.
Magnetic nanocomposite has been synthesized successfully using biopolymer route which acts as a source of carbon for carbide formation. The present approach based on thermal decomposition represents a considerable advance over previous reports that often use high-energy procedures or costly and hazardous precursors. X-ray diffraction, high-resolution transmission electron microscopy and vibrating sample magnetometer have been used to characterize the composites. Multi phase formation is evident from X-ray diffraction in the as-prepared samples. Phase confirmation was further done from M (magnetization) versus T (temperature) curve indicating presence of different phases of carbide along with iron oxide. TEM study suggests formation of cuboidal shape nanocomposite using two different quenching conditions. Transmission electron microscopy also confirmed the formation of carbon layer in the vicinity of the Fe3O4/Fe3C nanoparticles. The magnetic measurement shows that the composite nanoparticles exhibit a maximum magnetization of 60 emu g−1 at room temperature. Biocompatibility study with three different cell lines (HeLa, MCF-7 and L929) confirms that these nanocomposites are biocompatible. Temperature versus time measurement in an AC field suggests good heating ability of the samples. These investigations indicate that these nanocomposites may be useful for bioapplications, in particular for hyperthermia.  相似文献   

12.
The biological and therapeutic responses to hyperthermia, when it is envisaged as an anti-tumor treatment modality, are complex and variable. Heat delivery plays a critical role and is counteracted by more or less efficient body cooling, which is largely mediated by blood flow. In the case of magnetically mediated modality, the delivery of the magnetic particles, most often superparamagnetic iron oxide nanoparticles (SPIONs), is also critically involved. We focus here on the magnetic characterization of two injectable formulations able to gel in situ and entrap silica microparticles embedding SPIONs. These formulations have previously shown suitable syringeability and intratumoral distribution in vivo. The first formulation is based on alginate, and the second on a poly(ethylene-co-vinyl alcohol) (EVAL). Here we investigated the magnetic properties and heating capacities in an alternating magnetic field (141 kHz, 12 mT) for implants with increasing concentrations of magnetic microparticles. We found that the magnetic properties of the magnetic microparticles were preserved using the formulation and in the wet implant at 37 °C, as in vivo. Using two orthogonal methods, a common SLP (20 W g−1) was found after weighting by magnetic microparticle fraction, suggesting that both formulations are able to properly carry the magnetic microparticles in situ while preserving their magnetic properties and heating capacities.  相似文献   

13.
The size mono-dispersity, saturation magnetization, and surface chemistry of magnetic nanoparticles (NPs) are recognized as critical factors for efficient biomedical applications. Here, we performed modified water-in-oil inverse nano-emulsion procedure for preparation of stable colloidal superparamagnetic iron oxide NPs (SPIONs) with high saturation magnetization. To achieve mono-dispersed SPIONs, optimization process was probed on several important factors including molar ratio of iron salts [Fe3+ and Fe2+], the concentration of ammonium hydroxide as reducing agent, and molar ratio of water to surfactant. The biocompatibility of the obtained NPs, at various concentrations, was evaluated via MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) assay and the results showed that the NPs were non-toxic at concentrations <0.1 mg/mL. Surface functionalization was performed by conformal coating of the NPs with a thin shell of gold (∼4 nm) through chemical reduction of attached gold salts at the surface of the SPIONs. The Fe3O4 core/Au shell particles demonstrate strong plasmon resonance absorption and can be separated from solution using an external magnetic field. Experimental data from both physical and chemical determinations of the changes in particle size, surface plasmon resonance optical band, phase components, core–shell surface composition, and magnetic properties have confirmed the formation of the mono-dispersed core–shell nanostructure.  相似文献   

14.
Magnetic nanoparticles have promising applications in many areas, for example optics, electronics, biology, medicine, etc. The main goal of this study is to synthezise and characterize ε-Fe2O3 magnetic nanoparticles embedded in amorphous SiO2 matrix. The Mössbauer spectroscopy analysis of the samples was complemented by the study of X-ray powder diffraction and high-resolution transmission electron microscopy.  相似文献   

15.
In this work, iron oxide nanoparticles synthesized with gallic acid and tannic acid are characterized using High-Resolution Transmission Electron Microscopy (HRTEM). Its size, form, and structure are compared with nanoparticles obtained previously using alfalfa biomass in order to find a simpler, consistent, and environmentally friendly method in the production of iron oxide nanoparticles.  相似文献   

16.
Superparamagnetic iron oxide (SPIO) nanoparticles were synthesized by coprecipitation technique and further functionalized with amino-group to obtain amino-group functionalized (amino-SPIO) nanoparticles. The X-ray diffraction results reveal the structure of amino-SPIO nanoparticles, from which the average iron core diameter is approximately 10 nm by calculation; while Zetasizer reveals their hydrodynamic diameter are mainly distributed in the range of 40?C60 nm. These nanoparticles can be taken up by liver tissue, resulting in dramatically darkening of liver tissue under T2-magnetic resonance imaging (MRI). The spin?Cspin relaxivity coefficient of these nanoparticles is 179.20 mM?1 s?1 in a 1.5 T magnetic resonance system. In addition, amino-SPIO nanoparticles were conjugated to Tat (FITC) peptide and incubated with neural stem cells in vitro, the authors can detect the positive-labeling (labeled) neural stem cells showing green fluorescence, which indicates Tat (FITC) peptide-derivated amino-SPIO nanoparticles are able to enter cells. Furthermore, it was also find significant negative T2 contrast enhancement when compared with the non-nanoparticles-labeled neural stem cells in T2-weighted MRI. The amino-SPIO nanoparticles show promising potential as a new type of labeling probes, which can be used in magnetic resonance-enhanced imaging and fluorescence diagnosis.  相似文献   

17.
Urease enzyme was covalently attached on the poly(glycidylmethacrylate) (PGMA)-grafted iron oxide nanoparticles on Au electrode for the fabrication of urea biosensor. The telomere of poly(glycidylmethacrylate) (PGMA) with a trimethoxysilyl terminal group was synthesized by telomerization of glycidylmethacrylate. Iron oxide nanoparticles were coated with telomere of poly(glycidylmethacrylate) in order to obtain good enzyme immobilization platform. The telomere and nanoparticles were characterized by using Fourier transform infrared (FT-IR), X-ray diffraction (XRD), transmission electron microscopy (TEM) and thermal gravimetric analysis (TGA). The biosensor’s potentiometric response was measured as a function of urea concentration in phosphate buffer solution (10 mM, pH 7.5) and showed a linear range of 0.25–5.0 mM urea. The produced biosensor exhibited a good response time of ~8 s and was stable for about two months. The basic features (optimum pH, optimum temperature, interference and storage stability) of the enzyme electrode were determined.  相似文献   

18.
In this work, the preparation of a polypyrrol-magnetite composite with good magnetic and electric properties is described. Firstly, the method consists of the electrochemical synthesis of magnetite nanoparticles 20 nm in diameter and narrow size distribution, and secondly, the encapsulation of the nanoparticles in a polymer matrix during its formation by chemical oxidation of the monomer. Particles appear well dispersed in the polymer matrix by transmission electron microscopy (TEM) while no degradation, in terms of nanoparticles size or magnetic properties during the polymer formation, seems to take place as it was revealed by X-ray diffraction and Mössbauer spectroscopy. Saturation magnetization increases with the amount of magnetic material present in the composite, but conductivity decreases in such a way that the amount of magnetic material was optimized to 10% with respect to the monomer to obtain a composite with high electrical conductivity and magnetic response.  相似文献   

19.
Using density functional theory, we systematically investigate the adsorption geometries and electrical properties of (3,3) carbon nanotube (CNT) integrated on hydrogen-terminated Si(001):1?×?1 surface. Prior to adsorption of the CNT, the surface is patterned in two different ways by desorbing selective hydrogen atoms from the surface. The (3,3) CNT which is metallic in nature becomes semiconducting with a band gap around the fermi level when it is supported on patterned hydrogen-terminated Si(001):1?×?1 surface. However, the band gap is reduced when a transverse electric field is applied, allowing the (3,3) CNT on the patterned hydrogen-terminated Si(001):1?×?1 to become metallic at a critical field strength. The tuning of electrical properties of the (3,3) CNT integrated with Si surface may have potential technological applications.  相似文献   

20.
In the present study, solid-solution gold?Cplatinum (Au?CPt) nanoparticles with controllable compositions were fabricated by high-intensity femtosecond laser irradiation of an aqueous solution of gold and platinum ions without any chemicals and complicated processes. Transmittance electron microscopy revealed that the single nanometer-sized particles were fabricated by femtosecond laser irradiation of mixed aqueous solutions of gold and platinum ions. The crystalline structure of nanoparticles was characterized by electron and X-ray diffractions. Contrary to the bulk Au?CPt binary systems, which commonly contain a pair of diffraction peaks between pure gold and platinum peaks because of its large miscibility gap in phase diagram, or mixture of Au and Pt, the diffraction peaks of Au?CPt nanoparticles fabricated in the experiment showed a characteristic of the fcc-type lattice. Moreover, the diffraction patterns shifted monotonically from the peak position of pure gold to that of pure platinum as the fractions of platinum ions in the solution were increased. These observations strongly imply that the Au?CPt nanoparticles were solid solution with intended compositions. This technique is not only simple and environmentally friendly, but also applicable to other binary and ternary systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号