首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Drying dissipative patterns of cationic gel crystals of lightly cross-linked poly(2-vinylpyridine) spheres (CAIBA-P2VP(0.1), CAIBA-P2VP(0.5), and CAIBA-P2VP(1), 107?~?113 nm in diameter and 0.1, 0.5, and 1 in degrees of cross-linking) were observed on a cover glass, a watch glass, and a Petri glass dish. Convectional spoke line and cluster patterns were recognized with the naked eyes, which supports that these poly(2-vinylpyridine) gel spheres aggregate temporarily and reversibly during the course of drying. Two kinds of broad rings were observed at the outside edge and inner region in the macroscopic drying pattern. The size of the inner rings decreased with gel concentration. Formation of similar-sized aggregates (or agglomerates) and their ordered arrays ((a) ordered ring, (b) spoke lines, (c) net structures, and (d) lattice structures) were observed, though the arrays were not so complete compared with those of large-sized analogous gel spheres. One of the main causes of the incomplete ordering of the aggregates is the rather high polydispersities in the sphere size. The ordering of similar-sized aggregates is common among the gel spheres including anionic poly(N-isopropylacrylamide) and cationic poly(2-vinylpyridine). Size effect of cationic gel spheres on the ordering of the agglomerates was clarified definitely in this work. The role of the convectional flow and the electrical double layers around the agglomerates and their interaction with the substrates during drying was also clarified to be very important for the drying pattern formation.  相似文献   

2.
Colloidal crystallization and amorphous solidification of deionized suspensions of the polydispersed cationic gel spheres of lightly cross-linked poly(2-vinylpyridine), CAIBA-P2VP (107~113 nm in diameter, ±19~22 nm in dispersity), have been studied from the reflection spectroscopy, morphology, phase diagram, and elastic property. Crystallization takes place even for the polydispersed cationic gel spheres by the significant contribution of the extended electrical double layers formed around the spheres. Critical concentrations of melting coexisted with ion exchange resins were around 0.02 in volume fraction and high compared with those of other cationic and anionic gel crystals examined hitherto. The densities (ρ) of CAIBA-P2VP in suspension state, i.e., weight percent of the gel spheres divided by the corresponding volume percent, was around 0.3. The ρ values decreased sharply with decreasing size of P2VP gel spheres, which supports the small gel spheres containing much water inside and being softer than the large ones. The closest intersphere distances of the crystals and/or amorphous solids were much longer than the hydrodynamic diameters of the gel spheres especially at low sphere concentrations. Fluctuation parameters (b) evaluated from the rigidities of CAIBA-P2VP (0.15~0.28) were large compared with those of gel crystals of large-sized P2VP-based cationic gel spheres, anionic thermosensitive gel spheres of poly(N-isopropylacrylamide) (0.05~0.09) and further much larger than those of typical colloidal hard spheres (around 0.03). The dispersity in sphere size played an important role for distinguishing crystal and amorphous solid. Importance of the extended electrical double layers around the cationic gel spheres is supported in addition to the excluded volume effect of the sphere themselves on the crystallization and/or solidification.  相似文献   

3.
4.
Drying dissipative patterns of deionized and colloidal crystal-state suspensions of the cationic gel spheres of lightly cross-linked poly(2-vinyl pyridine) stabilized with poly(ethylene glycol) were observed on a cover glass, a watch glass, and a Petri glass dish. Convectional patterns were recognized with the naked eyes. The broad rings were observed in the drying pattern and their size and width decreased as gel concentration decreased. Formation of the monodispersed agglomerated particles and their ordered arrays were observed. This work clarified the formation of the drying microscopic structures of (a) ordered rings, (b) flickering ordered spoke-lines, (c) net structure, and (d) lattice-like ordered structures of the agglomerated particles. The ordering of the agglomerated particles of the cationic gel spheres is similar to that of the anionic thermo-sensitive gel spheres of poly(N-isopropyl acrylamide). The role of the electrical double layers around the agglomerated particles and the interaction of the particles with the substrates during dryness are important for the ordering. The microscopic drying patterns of gel spheres were different from those of linear-type polymers and also from typical colloidal hard spheres, though the macroscopic patterns such as broad ring formation at the edges were similar to each other. The addition of sodium chloride shifted the microscopic patterns from lattice to net structures.  相似文献   

5.
Colloidal crystallization of poly(n-butyl acrylate) spheres (ammonium persulfate-poly(n-butyl acrylate) (APS-PBA), 320?±?50 nm in diameter) was studied in deionized aqueous suspension. Coexistence of the crystal and distorted crystal structures was observed by the reflection spectroscopy. The critical concentrations of melting were ca. 0.01 and 0.03 in volume fraction in the presence of ion-exchange resins and in their absence, respectively. Crystal structures melted away during dryness by fusion of each spheres on the substrates, i.e., cover glass, watch glass, and Petri glass dish. Thickness profiles of the dried film changed sharply from the broad ring to the round hill as sphere concentration increased. The sharpness parameter S was evaluated from the ratio of the film size (diameter) against the full width at half maximum in the thickness profiles of the ring and/or the round hill. The S values decreased sharply from 30 to 1.2 as initial volume fraction of the spheres increased from 0.0005 to 0.1. The S values were significantly low compared with those of typical colloidal spheres, which supports the aggregate and/or fusion of the spheres resulting in their low convectional flow during dryness. The round hill profile at the high sphere concentration also supports that the fusion takes place easier during dryness. Microscopic observation of the dried film supports the formation of the homogeneous fused structures. It was clarified that colloidal crystallization of APS-PBA spheres takes place by the extended electrical double layers around the spheres like typical colloidal crystals of hard spheres. However, APS-PBA spheres are not so stable by the fusion especially at the high sphere concentrations and on the substrates.  相似文献   

6.
Static light-scattering measurements of deionized suspensions of the thermosensitive gels of poly(N-isopropylacrylamide) with various degrees of cross-linking and sizes were made at 20 and 40 °C. Sharp scattering peaks are observed in the scattering curve, and they were attributed to the face-centered cubic (fcc) and/or body-centered cubic lattices (bcc) in the distribution of gel spheres. The fcc and bcc crystal structures formed in the stable and unstable conditions, respectively, i.e., the former formed more favorably at high sphere concentrations and/or low temperatures. The closest intersphere distances were much longer than the hydrodynamic diameters of the gel spheres especially at low sphere concentrations. These experimental results emphasize the important role of the extended electrical double layers in the crystallization of gel spheres, though the contribution of the double layers in gel systems is weak compared with that in the typical colloidal spheres.  相似文献   

7.
Colloidal crystallization of highly monodisperse spindle-shaped hematite particles coated with poly(poly(ethylene oxide) methyl ether methacrylate) brush (SHB) was studied by reflection spectroscopy and optical microscopy. SHB suspensions were deionized exhaustively with the mixtures of cation- and anion-exchange resins more than 6 months. The liquid thin film along the vertical cell wall above the horizontal air–liquid interface showed the strong color bands. Furthermore, the reflection spectra composed of many sharp peaks shifted continuously toward shorter wavelengths with time. These observations support the presence of thin film of SHB suspension, where the width is thickened downward by the gravity and the layered liquid further flow downward with time. The rigidities of SHB crystals in the bulk phase estimated from the optical microscopy in the sedimentation equilibrium were 0.007 to 0.7 Pa as SHB concentration increased from 0.006 to 0.35 wt.%. The fluctuation parameter, b-factors of the anisotropic crystals, was from 0.025 to 0.035 and decreased slightly as particle concentration increased. Rigidities and the fluctuation parameters of SHB suspensions support that the elastic properties of the anisotropic-shaped colloidal crystals are close to those of typical crystals of colloidal spheres. Compression of the SHB crystals by the gravity is also suggested in the sedimentation equilibrium state.  相似文献   

8.
Lightly cross-linked poly(4-vinylpyridine)-silica nanocomposite microgel particles have been recently reported to act as pH-responsive particulate emulsifiers [Fujii, S.; Read, E. S.; Armes, S. P.; Binks, B. P. Adv. Mater. 2005, 17, 1014]. In this work, the synthesis and performance of such nanocomposite microgel particles are studied in more detail. Scanning electron microscopy, dynamic light scattering, nitrogen microanalyses, thermogravimetric analysis, aqueous electrophoresis, and acid-base titration were used to characterize the nanocomposites in terms of their particle size and morphology, polymer and silica contents, surface compositions, and critical swelling pH, respectively. Depending on the polarity of the oil phase and the purity of the nanocomposite particles, either oil-in-water or water-in-oil emulsions could be prepared at pH 8-9, but not at pH 2-3. These emulsions were characterized in terms of their emulsion type, mean droplet diameter, and morphology using electrical conductivity, light diffraction, and both electron and optical microscopy. In some cases, rapid demulsification could be induced by lowering the solution pH: addition of acid led to protonation of the 4-vinylpyridine residues, which imparted cationic microgel character to the nanocomposite particles. Cross-linking of the nanocomposite microgel particles is essential for their optimum performance as a pH-responsive emulsifier, but unfortunately it is not sufficient to allow recycling.  相似文献   

9.
Morphology, phase diagram, and reflection spectroscopy of the colloidal crystals of thermo-sensitive gel spheres, poly (N-isopropylacrylamide) having degrees of cross-linking 10 and 2?mol.% (pNIPAm(200?C10) and pNIPAm(200?C2)) were studied. Giant colloidal single crystals formed at very low gel concentrations. Critical concentrations of melting increased as the degree of cross-linking decreased in the range from 10 to 0.5?mol.% and/or suspension temperature increased from 20 to 45?°C. The critical concentration decreased sharply as the suspensions were deionized with coexistence of the mixtures of cation- and anion-exchange resins. Density of a gel sphere (gel concentration in weight percent divided by that in volume percent) increased sharply as the degree of cross-linking and/or temperature increased. These results demonstrated that the colloidal crystallization takes place by the extended electrical double layers formed around the gel spheres in addition of the excluded-volume effect of the gels. Most of the researchers including the authors have believed that the crystallization of the gel spheres takes place by the excluded-volume effect. However, the present work clarified that the colloidal interfaces, which are inevitable for the formation of the electrical double layers, are formed firmly between the water phase and gel spheres, though the gel spheres contain a lot of water molecules in the sphere region.  相似文献   

10.
Crystal growth rate coefficients, k of the colloidal crystallization of thermo-sensitive gel spheres of poly(N-isopropylacrylamide) were measured from the time-resolved reflection spectroscopy mainly by the inverted mixing method in the deionized state. Crystallization of colloidal silica spheres were also measured for comparison. The k values of gel and silica systems increased sharply as the sphere concentration and suspension temperature increased. The k values of gel system were insensitive to the degree of cross-linking in the range from 10 to 2?mol% of cross-linker against amount of the monomer in mole and decreased sharply when the degree of cross-linking decreased further to 0.5?%. The k values increased as gel size increased. The k values of gel systems at 20?°C were small and observed only at the very high sphere concentration in volume fraction, whereas those at 45?°C were high but smaller than those of silica systems. Induction time (t i) after which crystallization starts, increased as the degree of cross-linking increased and/or the gel size decreased at any temperatures, when comparison was made at the same gel concentration. The t i values at 45?°C were high and decreased sharply with increasing sphere concentration, whereas those at 20?°C were high only at the very high sphere concentrations. Significant difference in the k and t i values between the soft gels and hard silica spheres was clarified. These kinetic results support that the electrical double layers play an important role for the gel crystallization in addition to the excluded volume of gel spheres. It is deduced further that the electrical double layers of the gel system form from the vague interfaces (between soft gel and water phases) compared with those of typical colloidal hard sphere system.  相似文献   

11.
The characterisation of two cross-linked poly(acryloylmorpholines), Enzacry Gel K1 and Enzacryl Gel K2, as matrices for aqueous gel permeation chromatography is described. Near ideal plots of logarithm molecular weight versus distribution coefficient, Kd, are obtained for polyethylene glycols and linear, oligomeric α,ω-diols approximate molecular weight ( n) fractionation ranges being 0–4000 and 0–20,000 for Enzacryl Gel K1 and Enzacryl Gel K2, respectively. Anomalous retardation of the Schardinger dextrins, cyclomaltohexose and cyclomaltoheptose, is observed although linear maltosaccharides behave normally. The internal gel volumes, calculated from column elution data in water, are significantly larger than the volumes of solvent imbibed by the dry column packings on constituting the gel. Internal gel volumes and solvent imbibition volumes in water are compared with the corresponding values obtained in chloroform and tetrahydrofuran. The two parameters are discussed, in the case of Enzacryl Gel K2 in water and chloroform, in the light of plots of logarithm viscometric hydrodynamic volume versus Kd for polyethylene glycols.  相似文献   

12.
A poly(N-isopropylacrylamide) (PNIPAAm) gel cross-linked with quaternized aminoalkyls was designed. A novel recyclable system based on the external solvent-responsive oil-absorption/elution transition ability of the PNIPAAm gel matrix was then developed.  相似文献   

13.
Reflection spectroscopy of deionized suspensions of the thermo-sensitive gels of poly (N-isopropylacrylamide) with various degrees of cross-linking were made in the sedimentation equilibrium at 20 °C. Rigidity of the crystals increased as sphere concentration increased and increased slightly as the degree of the cross-linking of the gel spheres increased. The fluctuation parameters of the gel crystals were between 0.05 and 0.07 and slightly larger than those of typical hard-sphere systems. These experimental results emphasize that the gel crystals are soft compared with those of typical hard-sphere systems and role of the extended electrical double layers for the crystallization of gel spheres is important but weak compared with that of hard colloidal spheres.  相似文献   

14.
By measuring diffusion rate, the conformation change of single poly(2-vinylpyridine) chain in aqueous solution was studied by fluorescence correlation spectroscopy. The data showed a stepwise change of hydrodynamic radius when pH value was tuned, reflecting a sign of first-order conformation transition, and a continuous change was found at varying salt concentration.  相似文献   

15.
In order to determine the stereoregularity of poly(4-vinylpyridine), 4-vinylpyridine-β,β-d2 was synthesized from 4-acetylpyridine. The 1H-NMR spectra of the deuterated and nondeuterated polymers were measured and analyzed. From the 1H-NMR spectra of poly(4-vinylpyridine-β,β-d2), triad tacticity can be obtained, while the 1H-NMR spectra of nondeuterated poly(4-vinylpyridine) give the fraction of isotactic triad. The 13C-NMR spectra of poly(4-vinylpyridine) were also observed, and the spectra of C4 carbon of polymers were assigned by the pentad tacticities. The fraction of isotactic triad of poly(2-vinylpyridine) and poly(4-vinylpyridine) obtained under various polymerization conditions were determined. The radical polymerization and anionic polymerizations with phenylmagnesium bromide and n-butyllithium as catalysts of 4-vinylpyridine gave atactic polymers.  相似文献   

16.
Morphology, phase diagram, and reflection spectroscopy of the colloidal crystals of thermo-sensitive gel spheres, poly (N-isopropylacrylamide) (224 nm in the hydrodynamic diameter at 25 °C) were studied. Giant colloidal single crystals formed at very low gel concentrations. Critical concentration of melting of gel spheres (0.8 wt.% without ion-exchange resins) decreased sharply to 0.01 wt.% as the gel suspension was deionized exhaustively with coexistence of the mixtures of cation- and anion-exchange resins and increased substantially as concentration of sodium chloride increased. These studies demonstrated that the colloidal crystallization takes place by the extended electrical double layers formed around the gel spheres in addition of the excluded-volume effect of the gels. Most of the researchers including the authors have believed that the crystallization of the gel spheres takes place by the excluded-volume effect, in other words, by the hard-sphere model, exclusively. However, the present work clarified that the colloidal interfaces, which are inevitable for the formation of the electrical double layers, are formed firmly between the water phase and gel spheres, though the gel spheres contain a lot of water molecules in the inner the sphere region.  相似文献   

17.
18.
Colloidal poly(2-vinylpyridine)-silica nanocomposite particles can be efficiently prepared by emulsion polymerization at 60 degrees C using a commercial 20 nm aqueous silica sol as the sole stabilizing agent. Unlike previously reported colloidal nanocomposite syntheses, transmission electron microscopy studies indicate very high silica aggregation efficiencies (88-99%). The key to success is simply the selection of a suitable cationic azo initiator. In contrast, the use of an anionic persulfate initiator leads to substantial contamination of the nanocomposite particles with excess silica sol. The cationic azo initiator is electrostatically adsorbed onto the anionic silica sol at submonolayer coverage, which suggests that surface polymerization may be important for successful nanocomposite formation. Moreover, the 2-vinylpyridine can be partially replaced with either styrene or methacrylic comonomers to produce a range of copolymer-silica nanocomposite particles. The poly(2-vinylpyridine)-silica nanocomposite particles have a well-defined core-shell morphology, with poly(2-vinylpyridine) cores and silica shells; mean diameters typically vary from 180 to 220 nm, and mean silica contents range from 27 to 35% by mass.  相似文献   

19.
Influence of the gel size on the morphology, phase diagram, and reflection spectroscopy of the colloidal crystals of thermo-sensitive gel spheres, poly (N-isopropylacrylamide) (pNIPAm), was discussed by adding the data of two gel samples of pNIPAm(400–5) and pNIPAm(600–5) of 412 nm (at 25 °C) and 220 nm (at 45 °C) and of 517 nm (at 20 °C) and 294 nm (at 45 °C), respectively. Colloidal single crystals formed, but not so large compared with the giant crystals of small pNIPAm gels reported previously. The suspensions even with ion-exchange resins were turbid and hard to observe the single crystals clearly with the naked eyes as gel size increased. The critical concentration of melting decreased sharply as the suspensions were deionized with coexistence of the mixtures of cation- and anion-exchange resins. The critical concentration increased as the gel size increased and/or dispersion temperature increased. Density of the gel spheres increased as their size increased. These results demonstrated that the colloidal crystallization takes place by the extended electrical double layers formed around the gel spheres in addition of the excluded volume effect of the gels. Contribution of the electrical double layers on the crystallization increased sharply as temperature increased and gel concentration decreased, respectively. The contribution also increased slightly as sphere size increased, when comparison was made at the same gel concentration in wt.%. The present work clarified that the colloidal interfaces, which are inevitable for the formation of the electrical double layers, are formed between the water phase and gel spheres, though the gel spheres contain a lot of water molecules at the inner sphere region.  相似文献   

20.
Colloidal crystals consisted of silica, polystyrene, and poly(methyl methacrylate) monodispersed suspensions; deionized sufficiently in water at the same condition; were formed; and their properties were compared changing sphere diameter and volume fraction systematically. The size of these colloidal crystals was maximized at their critical sphere concentration irrespective of their sphere size. The Bragg peak wavelengths of these colloidal crystals were uniquely determined only by the sphere diameter and volume fraction for all kinds of colloidal spheres used in this work. The larger the sphere volume fraction, the larger the crystal growth rates, and there were no significant differences among the colloidal spheres. The rigidity of colloidal crystals increased in proportion to the number density of spheres. Consequently, the crystallization mechanism and properties of colloidal crystals formed by these spheres are not dependent on the kind of spheres, but they are dependent only on the sphere diameter and number density.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号