首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
Elemental analysis of glass was conducted by 16 forensic science laboratories, providing a direct comparison between three analytical methods [micro-x-ray fluorescence spectroscopy (μ-XRF), solution analysis using inductively coupled plasma mass spectrometry (ICP-MS), and laser ablation inductively coupled plasma mass spectrometry]. Interlaboratory studies using glass standard reference materials and other glass samples were designed to (a) evaluate the analytical performance between different laboratories using the same method, (b) evaluate the analytical performance of the different methods, (c) evaluate the capabilities of the methods to correctly associate glass that originated from the same source and to correctly discriminate glass samples that do not share the same source, and (d) standardize the methods of analysis and interpretation of results. Reference materials NIST 612, NIST 1831, FGS 1, and FGS 2 were employed to cross-validate these sensitive techniques and to optimize and standardize the analytical protocols. The resulting figures of merit for the ICP-MS methods include repeatability better than 5 % RSD, reproducibility between laboratories better than 10 % RSD, bias better than 10 %, and limits of detection between 0.03 and 9 μg g?1 for the majority of the elements monitored. The figures of merit for the μ-XRF methods include repeatability better than 11 % RSD, reproducibility between laboratories after normalization of the data better than 16 % RSD, and limits of detection between 5.8 and 7,400 μg g?1. The results from this study also compare the analytical performance of different forensic science laboratories conducting elemental analysis of glass evidence fragments using the three analytical methods.
Figure
?  相似文献   

7.
A recent paper by Pavese et al. presents formulas for calculating the differences (T ? T90) between temperatures measured on the internationally recognized temperature scale, ITS-90 and the thermodynamic temperature.However, there has been a systematic, international process in place to critically review the differences (T ? T90) and to disseminate the results in a convenient form. The process was undertaken by Working Group 4 (WG4) at the request of the Consultative Committee for Thermometry. WG4 recently published the results of its review including consensus values of (T ? T90) and a user-friendly, representation of (T ? T90). One of the authors of the Pavese et al. paper is member of WG4.A multiplicity of representations of (T ? T90) is an undesirable barrier to the exchange of thermodynamic information and obscures the status of temperature standards. Thus, WG4 recommends that the chemical thermodynamics community use the values (T ? T90) and their polynomial representation as published in the WG4 paper.  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号