首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The iron oxide nanoparticles were synthesized by a simple hydrothermal method at different heating temperatures and pH conditions. The synthesized materials were characterized by X-ray diffractometer, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, UV–visible spectrometer and vibrating sample magnetometer. With increment in pH of the synthesized materials were resulted in orthorhombic (goethite) and cubic (magnetite) structures at pH 6 and 12, respectively. The banding nature of synthesized materials was analyzed by infrared spectra. The synthesized powders at 130?°C showed higher percent of nanorods (length = 90–120 nm) in addition to lower percentage of nanoparticles. The material at pH 12 consisted of maximum nanoparticles with size = 10–60 nm with small agglomerations. Band gap energy of synthesized materials was 2.2–2.8 eV. Herein, the reaction conditions tuned the saturation magnetization (MS). The maximum MS (59.38 emu/g) was obtained at pH 12 and lower MS (0.65 emu/g) was observed at pH 6 due to intrinsic property of goethite phase.  相似文献   

2.
Magnetite nanoparticles of 10 nm average size were synthesized by ultrasonic waves from the chemical reaction and precipitation of ferrous and ferric iron chloride (FeCl3 · 6H2O y FeCl2 · 4H2O) in a basic medium. The formation and the incorporation of the magnetite in PMMA were followed by XRD and Mössbauer Spectroscopy. These magnetite nanoparticles were subsequently incorporated into the polymer by ultrasonic waves in order to obtain the final sample of 5 % weight Fe3O4 into the polymethylmethacrylate (PMMA). Both samples Fe3O4 nanoparticles and 5 % Fe3O4/PMMA nanocomposite, were studied by Mössbauer spectroscopy in the temperature range of 300 K–77 K. In the case of room temperature, the Mössbauer spectrum of the Fe3O4 nanoparticles sample was fitted with two magnetic histograms, one corresponding to the tetrahedral sites (Fe3?+?) and the other to the octahedral sites (Fe3?+? and Fe2?+?), while the 5 % Fe3O4/PMMA sample was fitted with two histograms as before and a singlet subspectrum related to a superparamagnetic behavior, caused by the dispersion of the nanoparticles into the polymer. The 77 K Mössabuer spectra for both samples were fitted with five magnetic subspectra similar to the bulk magnetite and for the 5 % Fe3O4/PMMA sample it was needed to add also a superparamagnetic singlet. Additionally, a study of the Verwey transition has been done and it was observed a different behavior compared with that of bulk magnetite.  相似文献   

3.
Mössbauer spectroscopy was used in this study to investigate magnetite nanoparticles, obtained by spray pyrolysis and thermal treatment under H2 reduction atmosphere. Room temperature XRD data indicate the formation of magnetite phase and a second phase (metallic iron) which amount increases as the time of reduction under H2 is increased. While room temperature Mössbauer data confirm the formation of the cubic phase of magnetite and the occurrence of metallic iron phase, the more complex features of 77 K-Mössbauer spectra suggest the occurrence of electronic localization favored by the different crystalline phase of magnetite at low temperatures which transition to the lower symmetry structure should occur at T ~120 K (Verwey transition).  相似文献   

4.
Y2O3 nanoparticles and nanorods have been firstly synthesized in bulk Ti-Y films prepared by magnetron sputtering on Si (100) substrates at different temperatures. X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and energy dispersive X-ray spectroscopy (EDS) are used to characterize the structure, morphology, and composition of the as-synthesized nanoparticles and nanorods. The mechanical properties of the sputtered films are investigated using nanoindentation techniques. The results indicate that both the nanoparticles and nanorods have a pure cubic Y2O3 structure resulting from the reaction of Y atoms with the residual O2 in the vacuum chamber, and are free from defects and dislocations with uniform diameters of about 30 nm. The Y2O3 nanoparticles mainly distribute at the grain boundaries of the Ti matrix and the nanorods have lengths ranging from 250 nm to more than 1 μm with the growth direction parallel to the (002) plane. As the growth temperature elevates, the nanoparticles turn to be coarsening while more and longer nanorods are inclined to form. Compared with the Ti film, the TiY films have a remarkable increase in hardness, but do not exhibit expected increase in elastic modulus. Finally, the growth mechanism is also briefly discussed.  相似文献   

5.
CoWO4 nanorods were synthesized at 453 K for 12 h by a hydrothermal technology from Na2WO4 · 2H2O and CoCl2 · 6H2O in the presence of sodium dodecyl sulfate (SDS). The as-synthesized CoWO4 nanorods were characterized by various techniques of X-ray diffraction, transmission electron microscopy, scanning electron microscopy, and X-ray detector. Luminescent properties of the samples were measured at room temperature. The results showed that CoWO4 products are nanorods with diameters of about 20 nm, and lengths ranging between 100 and 200 nm. CoWO4 nanorods display a very strong PL peak at 453 nm with the excitation wavelength 300 nm. The possible formation mechanism of CoWO4 nanorods was suggested.  相似文献   

6.
We report on the synthesis and characterization of uncoated and gold coated magnetite nanoparticles. Structural characterizations, carried out using X-ray diffraction, confirm the formation of magnetite phase with a mean size of ~7 and ~8 nm for the uncoated and gold covered magnetite nanoparticles, respectively. The value of the gold coated Fe3O4 nanoparticles is consistent with the mean physical size determined from transmission electron microscopy images. Mössbauer spectra at room temperature are consistent with the thermal relaxation of magnetic moments mediated by particle-particle interactions. The 77 K Mössbauer spectra are modeled with four sextets. Those sextets are assigned to the signal of iron ions occupying the tetrahedral and octahedral sites in the core and shell parts of the particle. The room-temperature saturation magnetization value determined for the uncoated Fe3O4 nanoparticles is roughly ~60 emu/g and suggests the occurrence of surface effects such as magnetic disorder or the partial surface oxidation. These surface effects are reduced in the gold-coated Fe3O4 nanoparticles. Zero-field–cooled and field-cooled curves of both samples show irreversibilities which are consistent with a superparamagnetic behavior of interacting nanoparticles.  相似文献   

7.
Fe3O4 nanorods with average diameters of 40-50 nm and lengths of up to 1 μm were synthesized through hydrolysis of FeCl3 and FeSO4 solutions containing urea in the temperature range from 90 to 95 °C in reflux condition for 12 h, following an aging time of 12 h. The porous hematite nanorods were prepared by calcination of the precursor which was obtained from hydrolysis of FeCl3 and FeSO4 solutions containing urea at a temperature of 90 °C for 10 h in hydrothermal condition. The formation of the porosity of hematite was due to the decomposition of FeCO3 and FeOOH. Urea played a key role in the formation of the iron oxide nanorods. Transmission electron microscopy (TEM) images showed that the morphology of magnetite particles is homogeneous in the shape of rods and hematite rods are full of porosity. The values of saturation magnetization (M) and coercivity (H) of magnetite nanorods are 67.55 emu/g and 114 Oe, respectively. The samples were also characterized by X-ray powder diffraction (XRD) and electron diffraction (ED). At last, the forming mechanism of both the magnetite and porous hematite nanorods was discussed.  相似文献   

8.
Fucan-coated magnetite (Fe3O4) nanoparticles were synthesized by the co-precipitation method and studied by Mössbauer spectroscopy and magnetic measurements. The sizes of the nanoparticles were 8–9 nm. Magnetization measurements and Mössbauer spectroscopy at 300 K revealed superparamagnetic behavior. The magnetic moment of the Fe3O4 is partly screened by the Fucan coating aggregation. When the magnetite nanoparticles are capped with oleic acid or fucan, reduced particle-particle interaction is observed by Mössbauer and TEM studies. The antitumoral activity of the fucan-coated nanoparticles were tested in Sarcoma 180, showing an effective reduction of the tumor size.  相似文献   

9.
In this study, facile preparation of pure and nano-sized cobalt oxides particles was achieved using low-cost mechanical ball-milling synthesis route. Microstructural and morphological properties of synthesised products were characterised by X-ray diffraction (XRD) and transmission electron microscopy (TEM) techniques. XRD results indicated that the fabricated samples composed of cubic pure phase CoO and Co3O4 nanocrystalline particles with an average crystallite size of 37.2 and 31.8 nm, respectively. TEM images showed that the resulting samples consisted of agglomerates of particles with average diameter of about 37.6 nm for CoO and 31.9 nm for Co3O4. Phase purity of the prepared samples was further investigated due to their promising technological applications. Local atomic structure properties of the prepared nanoparticles were probed using synchrotron radiation-based X-ray absorption spectroscopy (XAS) including X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS). EXAFS data analysis further confirmed the formation of single-phase CoO and Co3O4 nanoparticles. In addition, structural properties of cobalt oxide nanoparticles were investigated by performing density functional theory calculations at B3LYP/TZVP level and Born–Oppenheimer molecular dynamics. Theoretical calculations for both prepared samples were found to be consistent with the experimental results derived from EXAFS analysis. Obtained results herein reveals that highly crystalline and pure phase CoO and Co3O4 nanoparticles can be synthesised using simple, inexpensive and eco-friendly ball-milling method for renewable energy applications involving fuel cells and water splitting devices.  相似文献   

10.
PtCo nanoparticles with homogeneous size (around 3–4 nm) have been synthesized in a water-in-oil microemulsion of water/polyethylenglycol–dodecylether (BRIJ®30)/n-heptane. X-ray diffraction study revealed the formation of a cubic phase with a gradual decrease of the cell parameter with increasing cobalt incorporation in the crystalline lattice of platinum. In relation to their magnetic properties, the PtCo nanoparticles present a superparamagnetic behaviour even after annealing, although higher permeability was induced by the thermal treatment. Finally, the electrocatalytic activity of the particles towards oxalic acid oxidation in H2SO4 was evaluated. The Pt74Co26 nanoparticles showed the highest reactivity for this reaction.  相似文献   

11.
Controlling and changing size, crystal structure and morphology of antimony and tin-doped indium oxide (IATO) nanoparticles can effectively influence their specific optical properties. Nanocube-like, nanorod-like and nanosphere-like IATO nanoparticles have been fabricated from 20 to 200 nm in diameter by sintering as-prepared precursors with distinct crystallographic structures and morphologies. These nano-sized precursors are either cubic In(OH)3 or orthorhombic InOOH with different crystallographic sizes and shapes due to the use of different solvents (deionized water, absolute ethyl alcohol and ethylene glycol) in hydrothermal synthesis process. Characterization and comparison of experimental samples have detailedly demonstrated that desired optical properties of IATO nanoparticles should be attained by appropriate change of size, crystal structure and morphology of IATO nanoparticles.  相似文献   

12.
In this study, the synthesis of Mn3O4 (husmannite) nanoparticles was carried out in two different alkali media under sonication by ultrasonic bath and conventional method. Manganese acetate was used as precursor, sodium hydroxide and hexamethylenetetramine (HMT) as basic reagents in this synthesis. An ultrasonic bath with low intensity was used for the preparation of nanomaterials. The as prepared samples were characterized with X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (HRTEM, TEM), energy-dispersive spectrum (EDS), and superconducting quantum interference device (SQUID) analysis. The XRD patterns exhibit the nanocrystals are in pure tetragonal phase. The chemical composition was obtained by EDS analysis and confirmed the presence of Mn and O in the sample. According to the TEM and HRTEM results, both nanorods and nanoparticles of Mn3O4 were obtained in the presence of ultrasonic irradiation. The average size of nanoparticles was 10 nm, and the size of nanorods was 12 nm in diameter and 100-900 nm in length for the samples prepared in basic medium with sodium hydroxide. In the conventional method with the same basic medium, the nanorod was not observed and the nearly cubic nanoparticles was appeared with an average size of 2.5 nm. The selected area electron diffraction (SAED) patterns revealed that the nanocrystals are polycrystalline in nature. When HMT was used as a basic reagent in the presence of ultrasonic irradiation, it was led to a higher size of nanoparticles and nanorods than when sodium hydroxide was used as a basic reagent. The average size of nanoparticles was about 15 nm and its shape was nearly cubic. The diameter for nanorods was 50 nm and the length was about a few micrometers.The magnetic measurements were carried out on the sample prepared in sodium hydroxide under ultrasonic irradiation. These measurements as a function of temperature and field strength showed a reduction in ferrimagnetic temperature (Tc = 40 K) as compared to those reported for the bulk (Tc = 43 K). The superparamagnetic behavior was observed at room temperature with no saturation magnetization and hysteresis in the region of measured field strength.  相似文献   

13.
Iron phosphate nanorods were synthesized via a novel facile route. The structure, composition, and morphology of the prepared material were characterized by X-ray diffraction (XRD) and transmission electron microscope (TEM), respectively. The diffraction lines were indexed to the hexagonal structure. The diameter of these nanorods is about in the range of 20–30 nm and the length 50–100 nm. The preferential growth direction of the prepared material was the [100]. The reaction mechanism for the synthesis of FePO4 nanorods was also primarily discussed. Compared to the bulky and the irregular nanoparticles, the nanometer ones will be more fascinating for application in many areas.  相似文献   

14.
Titania (TiO2) nanorods have been synthesized with controlled size for dye-sensitized solar cells (DSSCs) via hydrothermal route at low hydrothermal temperature of 100 °C for 24 h. The titania nanorods were characterized using XRD, SEM, TEM/HRTEM, UV-vis Spectroscopy, FTIR and BET specific surface area (S BET), as well as pore-size distribution by BJH. The results indicated that the bulk traps and the surface states within the TiO2 nanorods films have enhanced the efficiency of DSSCs. The size of the titania nanorods was 6.7 nm in width and 22 nm in length. The high surface area can provide more sites for dye adsorption, while the fast photoelectron-transfer channel can enhance the photogenerated electron transfer to complete the circuit. The specific surface area S BET was 77.14 m2?g?1 at the synthesis conditions. However, the band gap energy of the obtained titania nanorods was 3.2 eV. The oriented nanorods with appropriate lengths are beneficial in improving the electron transport property and thus leading to the increase of photocurrent, together enhancing the power conversion efficiency. A nearly quantitative absorbed photon-to-electrical current conversion achieved upon excitation at wave length of 550 nm and the power efficiency was enhanced from 5.6 % for commercial TiO2 nanoparticles Degussa (P25) cells to 7.2 % for TiO2 nanorods cells under AM 1.5 illumination (100 mW?cm?2). The TiO2 cells performance was improved due to their high surface area, hierarchically mesoporous structures and fast electron-transfer rate compared with the Degussa (P25).  相似文献   

15.
Effects of functionalization materials on the selectivity of SnO2 nanorod gas sensors were examined by comparing the responses of SnO2 one-dimensional nanostructures functionalized with CuO and Pd to ethanol and H2S gases. The response of pristine SnO2 nanorods to 500 ppm ethanol was similar to 100 ppm H2S. CuO-functionalized SnO2 nanorods showed a slightly stronger response to 100 ppm H2S than to 500 ppm ethanol. In contrast, Pd-functionalized SnO2 nanorods showed a considerably stronger response to 500 ppm ethanol than to 100 ppm H2S. In other words, the H2S selectivity of SnO2 nanorods over ethanol is enhanced by functionalization with CuO, whereas the ethanol selectivity of SnO2 nanorods over H2S is enhanced by functionalization with Pd. This result shows that the selectivity of SnO2 nanorods depends strongly on the functionalization material. The ethanol and H2S gas sensing mechanisms of CuO- and Pd-functionalized SnO2 nanorods are also discussed.  相似文献   

16.
TiO2-core/ZnO-shell nanorods were synthesized using a two-step process: the synthesis of TiO2 nanorods using a hydrothermal method followed by atomic layer deposition of ZnO. The mean diameter and length of the nanorods were ~300 nm and ~2.3 μm, respectively. The cores and shells of the nanorods were monoclinic-structured single-crystal TiO2 and wurtzite-structured single-crystal ZnO, respectively. The multiple networked TiO2-core/ZnO-shell nanorod sensors showed responses of 132–1054 % at ethanol (C2H5OH) concentrations ranging from 5 to 25 ppm at 150 °C. These responses were 1–5 times higher than those of the pristine TiO2 nanorod sensors at the same C2H5OH concentration range. The substantial improvement in the response of the pristine TiO2 nanorods to C2H5OH gas by their encapsulation with ZnO may be attributed to the enhanced absorption and dehydrogenation of ethanol. In addition, the enhanced sensor response of the core–shell nanorods can be attributed partly to changes in resistance due to both the surface depletion layer of each core–shell nanorod and the potential barriers built in the junctions caused by a combination of homointerfaces and heterointerfaces.  相似文献   

17.
Antimony trioxide (Sb2O3) nanoparticles with particle size range from 2 to 12 nm were successfully synthesized by chemical reducing method. Antimony trichloride was reduced by hydrazine with the presence of sodium hydroxide (NaOH) as catalyst in ethylene glycol at 120 °C for 1 h. Effects of hydrazine concentration ([N2H5OH]/[Sb3+] = 0.75, 5, 10, 20, and 30, when concentration of NaOH was fixed [NaOH]/[Sb3+] = 3) and NaOH concentration ([NaOH]/[Sb3+] = 0, 1, 3, and 5, when concentration of hydrazine was fixed [N2H5OH]/[Sb3+] = 10) on the particle size and shape of the Sb2O3 nanoparticles were investigated. Transmission electron microscope, selected area electron diffraction pattern, and high resolution electron microscope were employed to study the morphology and crystallinity of the nanoparticles. It was observed that the particle size decreased and remained constant when [N2H5OH]/[Sb3+]) ≥ 10 and [NaOH]/[Sb3+] = 3. Further study on the crystallinity and phase of the nanoparticles was assisted by X-ray diffractometer (XRD). XRD revealed a cubic phase of Sb2O3 (ICDD file no. 00-043-1071) with preferred plane of (622) and lattice spacing of 1.68 Å. Correlation between UV–visible absorption wavelengths of the nanoparticles and their sizes was established.  相似文献   

18.
In this paper, we reported a method to prepare monodisperse magnetite nanoparticles at mild temperature using cheap and non-toxic precursors. It overcomes the shortages of chemical co-precipitation method and thermal decomposition method and combines the advantages of facile, cheap, large-scale, monodisperse, nanosize, and low synthesis temperature and low toxic. In this method, FeCl3 · 6H2O, FeCl2 · 4H2O and sodium oleate were mixed in toluene/ethanol/water mixture solvent and refluxed at 74 °C to prepare magnetite nanoparticles directly. The nanoparticles were characterized by transmission electron microscopy, dynamic light scattering, X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared spectrometer and thermogravimetric analysis. The magnetic properties of nanoparticles were measured by superconducting quantum interference device. The results showed that the nanoparticles are well-monodisperse with about 4–5 nm of average diameter. The nanoparticles were proved to be superparamagnetic with saturated magnetization 23.6 emu/g and blocking temperature 24.4 K. A possible formation mechanism of monodisperse magnetite nanoparticles was presented at the same time.  相似文献   

19.
A nanohybrid C-LiMnPO4 is important to tailor its electrochemical properties useful for Li+-ion batteries and photo-catalysis. In this article, we report a simple in situ C-LiMnPO4 synthesis, wherein the LiMnPO4 grows from a supersaturated solution LiOH·H2O, MnSO4·H2O, and H3PO4 in water at 200 °C in an autoclave in a hydrothermal reaction and bonds in situ to nascent carbon of a surface layer on a surface reaction with a long chain hydrocarbon used during the reaction. A phase pure C-LiMnPO4 is formed in a shape of nanorods (Pnma orthorhombic crystal structure), with 100–150 nm diameters, 150–800 nm lengths, and 2–3 nm thickness of a co-bonded C-sp2 surface layer. The LiMnPO4 rigidly co-bonds to C-sp2 via O2? in the PO4 3? polygons in a joint surface layer that a single molecular bonding extends well up to 600 °C, with a due mass loss on an extended heating in air. The sample contains fine pores with an average 3.0 nm diameter and a 9.0 m2/g surface area. At room temperature, it develops a huge dielectric permittivity ε r~1.9 × 105 near 1 Hz frequencies, which on raising the frequency decays progressively to a fairly steady ε r~1.5 × 103 at ≥1 kHz. Bare LiMnPO4 is a low dielectric phase, ε r < 10. A non-Debye type of dielectric relaxation is shown in the modulus plots. As frequency approaches to 105 Hz, nearly three orders of larger ac conductivity, 2.5 × 10?5 Scm?1 at 106 Hz, develop over a carbon-free LiMnPO4 value useful for the applications.  相似文献   

20.
Recently, increasing interest is spent on the synthesis of superparamagnetic iron oxide nanoparticles, followed by their characterization and evaluation of cytotoxicity towards tumorigenic cell lines. In this work, magnetite (Fe3O4) nanoparticles were synthesized by the polyol method and coated with polyethylene glycol (PEG) and glutathione (GSH), leading to the formation of PEG-Fe3O4 and GSH-PEG-Fe3O4 nanoparticles. The nanoparticles were characterized by state-of-the-art techniques: dynamic light scattering (DLS), atomic force microscopy (AFM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and superconducting quantum interference device (SQUID) magnetic measurements. PEG-Fe3O4 and GSH-PEG-Fe3O4 nanoparticles have crystallite sizes of 10 and 5 nm, respectively, indicating compression in crystalline lattice upon addition of GSH on the nanoparticle surface. Both nanoparticles presented superparamagnetic behavior at room temperature, and AFM images revealed the regular spherical shape of the nanomaterials and the absence of particle aggregation. The average hydrodynamic sizes of PEG-Fe3O4 and GSH-PEG-Fe3O4 nanoparticles were 69 ± 37 and 124 nm ± 75 nm, respectively. The cytotoxicity of both nanoparticles was screened towards human prostatic carcinoma cells (PC-3). The results demonstrated a decrease in PC-3 viability upon treatment with PEG-Fe3O4 or GSH-PEG-Fe3O4 nanoparticles in a concentration-dependent manner. However, the cytotoxicity was not time-dependent. Due to the superparamagnetic behavior of PEG-Fe3O4 or GSH-PEG-Fe3O4 nanoparticles, upon the application of an external magnetic field, those nanoparticles can be guided to the target site yielding local toxic effects to tumor cells with minimal side effects to normal tissues, highlighting the promising uses of iron oxide nanoparticles in biomedical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号