首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The syntheses and properties of the titanium(III) complexes Cp2Tir · R′CN (R = C6H5, o-, m-, p-CH3C6H4, CH2C6H5, C6F5, Cl; R′ = CH3, t-C4H9, C6H5, o-CH3C6H4, 2,6-(CH3)2C6H3) are described. In the complexes the nitrogen atom of the cyanide ligands is coordinated to the metal. The thermal stabilities of the complexes depend markedly on R and R′; on heating they undergo a novel reaction in which two cyanide ligands are coupled by formation of a CC bond, while the metal is oxidized to titanium(IV).  相似文献   

2.
The substitution reactions of monomeric dithiophosphinato complexes R2 PS2 M(CO)4 (R = C2 H5, C6H5; M = Mn, Re) with monodentate ligands P(C6H5)3, As(C6H5)3 and pyridine are examined kinetically. The reactions with P(C6H5)3 and pyridine follow first-order and those with As(C6H5)3 second-order kinetics. The rate constants as well as activation parameters are calculated and discussed in detail together with the reaction mechanism.  相似文献   

3.
Equilibrium geometries, bond dissociation energies and relative energies of axial and equatorial iron tetracarbonyl complexes of the general type Fe(CO)4L (L = CO, CS, N2, NO+, CN, NC, η2‐C2H4, η2‐C2H2, CCH2, CH2, CF2, NH3, NF3, PH3, PF3, η2‐H2) are calculated in order to investigate whether or not the ligand site preference of these ligands correlates with the ratio of their σ‐donor/π‐acceptor capabilities. Using density functional theory and effective‐core potentials with a valence basis set of DZP quality for iron and a 6‐31G(d) all‐electron basis set for the other elements gives theoretically predicted structural parameters that are in very good agreement with previous results and available experimental data. Improved estimates for the (CO)4Fe–L bond dissociation energies (D0) are obtained using the CCSD(T)/II//B3LYP/II combination of theoretical methods. The strongest Fe–L bonds are found for complexes involving NO+, CN, CH2 and CCH2 with bond dissociation energies of 105.1, 96.5, 87.4 and 83.8 kcal mol–1, respectively. These values decrease to 78.6, 64.3 and 64.2 kcal mol–1, respectively, for NC, CF2 and CS. The Fe(CO)4L complexes with L = CO, η2‐C2H4, η2‐C2H2, NH3, PH3 and PF3 have even smaller bond dissociation energies ranging from 45.2 to 37.3 kcal mol–1. Finally, the smallest bond dissociation energies of 23.5, 22.9 and 18.5 kcal mol–1, respectively are found for the ligands NF3, N2 and η2‐H2. A detailed examination of the (CO)4Fe–L bond in terms of a semi‐quantitative Dewar‐Chatt‐Duncanson (DCD) model is presented on the basis of the CDA and NBO approach. The comparison of the relative energies between axial and equatorial isomers of the various Fe(CO)4L complexes with the σ‐donor/π‐acceptor ratio of their respective ligands L thus does not generally support the classical picture of π‐accepting ligands preferring equatorial coordination sites and σ‐donors tending to coordinate in axial positions. In particular, this is shown by iron tetracarbonyl complexes with L = η2‐C2H2, η2‐C2H4, η2‐H2. Although these ligands are predicted by the CDA to be stronger σ‐donors than π‐acceptors, the equatorial isomers of these complexes are more stable than their axial pendants.  相似文献   

4.
The biomimetic oxidation of alkanes (cyclohexane, adamantane, cis-1,2-dimethylcyclohexane) with hydrogen peroxide catalyzed by Fe(II) complexes containing tetradentate nitrogen ligands (M = [Fe(bpmen)(MeCN)2](ClO4)2 (bispicolyl-1,2-dimethylethylenediamine), [Fe(bpen)(MeCN)2](ClO4)2 (bispicolylethylenediamine), and [Fe(tpcaH)(MeCN)2]2(ClO4)4 (tripyridylcarboxamide) is studied. The effects of the hydrogen peroxide concentration on the alcohol/ketone (A/K) ratio and on the regioselectivity of oxidation (3/2) are discovered. Rather high stereospecificity (RC = 96–99%) persisting at high hydrogen peroxide concentrations is hardly consistent with the participation of the HO. radical, inferred from the rather low regioselectivity and low A/K ratio observed under these conditions. The molecular mechanism of oxygen transfer from hydrogen peroxide, which was earlier proved reliably for low concentrations of hydrogen peroxide ([H2O2]/[M] ? 10), can be applied to high peroxide concentrations ([H2O2]/[M] > 10) if a new ferryl species containing two equivalents of the oxidant is assumed to be involved in the process. This assumption is confirmed by the direct stereospecific formation of alkyl hydroperoxide from alkane at a high concentration of hydrogen peroxide.  相似文献   

5.
The thermal reaction of Ru3(CO)12 with ethacrynic acid, 4‐[bis(2‐chlorethyl)amino]benzenebutanoic acid (chlorambucil), or 4‐phenylbutyric acid in refluxing solvents, followed by addition of two‐electron donor ligands (L), gives the diruthenium complexes Ru2(CO)4(O2CR)2L2 ( 1 : R = CH2O‐C6H2Cl2‐COC(CH2)C2H5, L = C5H5N; 2 : R = CH2O‐C6H2Cl2‐COC(CH2)C2H5, L = PPh3; 3 : R = C3H6‐C6H4‐N(C2H4‐Cl)2, L = C5H5N; 4 : R = C3H6‐C6H4‐N(C2H4‐Cl)2, L = PPh3; 5 : R = C3H6‐C6H5, L = C5H5N; 6 : R = C3H6‐C6H5, L = PPh3). The single‐crystal structure analyses of 2 , 3 , 5 and 6 reveal a dinuclear Ru2(CO)4 sawhorse structure, the diruthenium backbone being bridged by the carboxylato ligands, while the two L ligands occupy the axial positions of the diruthenium unit.  相似文献   

6.
A series of thiolate ligands were used to synthesize diiron(I) hexacarbonyl bis(thiolates) for structural studies. Conversion of the corresponding thiols with triiron(0) dodecacarbonyl yields complexes of the type [{(CO)3Fe(μ-SR)}2] [R = C6H5 ( 1 ), C6H4-4-CH3 ( 2 ), C6H4-4-F ( 3 ), C6F5 ( 4 ), C6H4-4-CF3 ( 5 ), C6H2-2,4,6-(CH3)3 ( 6 ), CH2–C6H4-4-Cl ( 7 )]. These complexes were isolated and fully characterized, including X-ray crystal structures of complexes 2 – 7 . The bridging thiolate ligands mainly influence the Fe–CO bond which is trans-positioned to the second iron(I) center. In solution, the anti-isomer with one axially and one equatorially oriented thiolate is the major species; severe steric strain induced by mesityl groups only allows the formation of syn-endo-isomeric molecules of 7 . Furthermore, light-induced CO release at solid material at the three representative complexes 1 , 3 , and 6 verify suitability as photoCORMs.  相似文献   

7.
Abstract

The interaction of the sodium salts of thiosemicarbazones with diphenylantimony chloride in 1:1 molar ratio in benzene solution lead to the formation of derivatives, Ph2Sb[SC(NH2)NN: C(R)R′] where R = H; R′ [dbnd] C6H5, CH3OC6H4, C6H5CH[dbnd]CH, and R′ [dbnd] CH3; R′[dbnd]C6H5, CH3OC6H4, C6H4CH3, respectively. The resulting complexes have been characterised on the basis of elemental analyses and molecular weight determination. The mode of bonding of the ligands with the metal atom has been proposed on the basis of I.R., 1H and 13C NMR studies. All these ligands are found to behave as monofunctional bidentate moiety in these complexes.  相似文献   

8.
Investigating the synthesis and properties of diiron azadithiolate complexes is one of the key topics for mimicking the active site of [FeFe]‐hydrogenases, which might be very useful for the design of new efficient catalysts for hydrogen production and the development of a future hydrogen economy. A series of new phosphine‐substituted diiron azadithiolate complexes as models for the active site of [FeFe]‐hydrogenases are described. A novel and efficient way was firstly established for the preparation of phosphine‐substituted diiron azadithiolate complexes. The reaction of Fe2(μ‐SH)2(CO)6 and phosphine ligands L affords the intermediate Fe2(μ‐SH)2(CO)5L ( A ). The intermediate reacts in situ with a premixed solution of paraformaldehyde and ammonium carbonate to produce the target phosphine‐substituted diiron azadithiolate complexes Fe2[(μ‐SCH2)2NH](CO)5L ( 1a – 1f ) (L = P(C6H4–4‐CH3)3, P(C6H4–3‐CH3)3, P(C6H4–4‐F)3, P(C6H4–3‐F)3, P(2‐C4H3O)3, PPh2(OCH2CH3)). Furthermore, reactions of the intermediate A with I‐4‐C6H4N(CH2Cl)2 in the presence of Et3N give the phosphine‐substituted diiron azadithiolate complexes Fe2[(μ‐SCH2)2NC6H4–4‐I](CO)5L ( 2a – 2e ) (L = P(C6H4–4‐CH3)3, P(C6H4–3‐CH3)3, P(C6H4–4‐F)3, P(C6H4–3‐F)3, P(2‐C4H3O)3). All the complexes were fully characterized using elemental analysis, IR and NMR spectroscopies and, particularly for 1a , 1c – 1e , 2a and 2c , single‐crystal X‐ray diffraction analysis. In addition, complexes 1a – 1f and 2a – 2e were found to be catalysts for H2 production under electrochemical conditions. Density functional theory calculations were performed for the reactions of Fe2(μ‐SH)2(CO)6 + P(C6H4–4‐CH3)3.  相似文献   

9.
Bao  Qiu-Xia  Zhang  Hong  Gao  Shi-Wu  Li  Xiao-Dong  Cheng  Xin-Lu 《Structural chemistry》2010,21(5):1111-1116
The adsorption of hydrogen molecule on a novel structure of Ti containing organometallic complexes grafted on silsequioxanes (SQ, H8Si8O12) was investigated by means of DFT method. The hydrogen adsorption properties of the complex structures TiRH7Si8O12 (R = C4H3, C5H4, C6H5) keep almost the same as that of corresponding Ti containing organometallic complexes. Moreover, these complex structures can avoid the problem of transition metal clustering which is a disadvantage for hydrogen adsorption. The maximum number of hydrogen molecules adsorbed was still determined by 18 electron rule, that is to say 5, 4, and 4 H2 molecules for TiRH7Si8O12 with R = C4H3, C5H4, and C6H5, respectively. At the same time, all the average binding energy of H2 is located in 0.2–1.0 eV, which is an advantage for hydrogen storage at ambient conditions. Therefore, the materials studied here may provide some enlightenment for developing new types of hydrogen storage materials.  相似文献   

10.
Photochemical substitution of CO ligands in C6H6Cr(CO)3, C5H5Mn(CO)3 and M(CO)6 (M = Cr, Mo, W) for PPh2C6H5Cr(CO)3, ligands was used to synthesize novel complexes: C6H6Cr(CO)2PPh2C6H5Cr(CO)3, C5H5Mn(CO)2PPh2C6H5Cr (CO)3 and M(CO)5PPh2C6H5Cr(CO)3.The complexes obtained have been characterized by elemental analysis, IR, 1H, 13C, 31P NMR, and mass spectra.The protonation reaction and the hydrogen isotopic exchange of arenechromium carbonyl complexes in acid media have been studied.The 13C NMR spectra of M(CO)5PPh2C6H5Cr(CO)3 show that the nature of the central metal atom influences the chemical shifts of the carbon nuclei of the carbonyl groups, shielding these atoms, increasing in the series W ⩽ Mo < Cr.  相似文献   

11.
Enantiomerically pure, C2-symmetric 2,6-bis(pyrazol-3-yl) pyridine ligands were obtained by treatment of diethyl-2,6-pyridinedicarbonate with (1R,4R)-(+)-camphor in the presence of NaH followed by ring closure with hydrazine. After twofold N-alkylation at the pyrazole rings, the addition of iron(II) chloride led to the according pentacoordinate dichloridoiron(II) complexes. All intermediates of the ligand synthesis, the ligands bearing NCH3 and NCH2C6H5 groups and the derived iron(II) complexes were structurally characterized by means of X-ray structure analysis. In-situ reaction with iron(II) carboxylates resulted in the formation of iron(II) carboxylate complexes, which turned out to be highly active in the hydrosilylation of acetophenone. However, even at room temperature, the enantiomeric excess of the product 1-phenylethanol is poor. 57Fe Mössbauer spectroscopy gave an insight into the species formed during catalysis.  相似文献   

12.
Titanium(IV) alkyl xanthates of the types CpTi(S2COR)Cl2, CpTi(S2COR)2Cl and CpTi(S2COR)3, where R = CH3, C2H5, C3H7, C4H9 and C5H11, have been prepared by the reaction of monocyclopentadienyl titanium(IV) trichloride with potassium alkyl xanthates in anhydrous dichloromethane. Conductance and infrared studies suggest that these complexes are non-electrolytes in which all of the xanthate ligands are bidentate. Proton nmr spectra of these complexes indicate that there is rapid rotation of the cyclopentadienyl ring about the metal-ring axis and for the CpTi(S2COR)3 complexes non-equivalence of the alkylxanthate ligands was observed.  相似文献   

13.
The complexation in iridium(IV)-purine base (adenine, hypoxanthine)-amino acid (α-alanine, aspartic acid, lysine) systems was studied by pH titration. The stability constants of 1: 1: 1 complexes were determined. The stability of 1: 1: 1 mixed-ligand complexes with hypoxanthine and adenine increases in the series Ala < Lys < Asp. Reactions between aqueous solutions gave the following coordination compounds: [Ir(C5H4N4O)(C3H6NO2)Cl]Cl2, [Ir(C5H4N4O)(C4H5NO4)]Cl2, [Ir(C5H4N4O)(C6H13N2O2)]Cl3, [Ir(C5H5N5)(C3H6NO2)]Cl3, [Ir(C5H5N5)(C4H5NO4)]Cl2, and [Ir(C5H5N5)(C6H13N2O2)]Cl3. The individual character of the complexes was established by chemical and thermogravimetric analyses and powder X-ray diffraction. The complexes were characterized by NMR, IR, and X-ray photoelectron spectroscopy. Alanine and lysine in mixed-ligand iridium(IV) complexes are bidentate (α-NH2 and COO groups), aspartic acid is tridentate, and purine bases function as polydentate ligands through heterocycle N atoms and functional groups (NH2 in adenine and C=O in hypoxanthine).  相似文献   

14.
The molecular structure and spectroscopic properties of a series of phenylplatinum complexes containing silsesquioxanate and phosphine ligands with general formula trans-[Pt{O10Si7(R)7(OH)2}(Ph)(L)2] (1: R = cyclo-C5H9, L = PEt3; 2: R = iso-C4H9, L = PEt3; 3: R = CH3, L = PEt3; 4: R = cyclo-C5H9, L = PMe3; 5: R = cyclo-C5H9, L = PMe2Ph; 6: R = cyclo-C5H9, L = PPh2Me; 7: R = cyclo-C5H9, L = PPh3) have been investigated by DFT/OPW91/6-31G(d) calculations, 1H, 13C, 29Si and 31P NMR and IR spectroscopy. DFT molecular modeling based on available X-ray and NMR data for complexes 1 and 2 allowed deriving structure-NMR spectra correlations. It was found that the alkyl substituents (R) attached to Si atoms, cyclo-C5H9, iso-C4H9 and CH3, slightly influence the geometry and multinuclear NMR parameters of the complexes in the series studied. The molecular structures of the Pt(II) complexes with R = cyclo-C5H9 (47) were predicted by DFT calculations of their simplified models with R = CH3 (4?7′). The geometry optimizations of 4?7′ showed square-planar configuration of Pt(II) center bonded to two trans phosphine ligands, a phenyl group and an O-monocoordinated silsesquioxanate. The structures 4?6′ are stabilized by two intramolecular hydrogen bonds similar to 1 and 2. A fast conformer exchange process A?B and switching of H-bonds in solution of 16 were suggested based on (i) the calculated conformer energies and small barrier of the process, and (ii) the observed single 1H NMR signal at low magnetic field. The stability of the Pt(II) complexes depends on the nature of the phosphine ligands and decreases in the order PMe2Ph > PMe3 > PPh2Me > PEt3 > PPh3. The PPh3 ligands attached to Pt(II) in 7 cause the largest geometry changes and a new set of weaker hydrogen bonds. The comparison of the calculated NMR and IR parameters with the experimental spectroscopic data reveals good coincidence and thus confirmed the suggested molecular structures.  相似文献   

15.
The family of organometallic Co(III) benzonitrile derivatives of general formula [CoCp(dppe)(p-NCR)][PF6]2 (R = C6H4NMe2, C6H4NH2, C6H4OMe, C6H4C6H5, C6H5, C6H4C6H4NO2, and C6H4NO2) have been synthesized. Spectroscopic and electrochemical data were analyzed in order to evaluate the extent of electronic coupling between the organometallic fragment and the nitrile ligands. An attempt of correlation between NMR spectroscopic data and the second-order non-linear optical properties is presented, based on this work and available published data for related η5-monocyclopentadienyliron, ruthenium and nickel complexes.  相似文献   

16.
We investigated the effect of an ancillary ligand (AL) on the emission color and luminous efficiencies of its complex, Ir(4-Me-2,3-dpq)2(AL), where 4-Me-2,3-dpq represents 4-methyl-2,3-diphenylquinolinato ligand. We expected that ancillary ligand modification by introduction of the bulky substituent to the complexes might allow luminous efficiency increase by reduction of T–T annihilation. Furthermore, some ancillary ligands may contribute to fine-tuning of their complex emission colors by influencing the energy level of Ir d-orbitals upon the orbital mixing. As new ancillary ligands substituting for acac which is a typical AL in the iridium complexes, pyrazolone-based ligands, 4-R-5-methyl-2-phenyl-2,4-dihydro-pyrazol-3-one series (przl-R), were prepared, where R represents C6H5, C6H4CH3 and C6H4Cl. These ligands were chelated to the iridium center to yield a new series of the iridium complexes, Ir(4-Me-2,3-dpq)2(przl-R). The X-ray crystal structure of Ir(4-Me-2,3-dpq)2(przl-C6H4Cl) was determined. The electrochemical and luminescence properties of the iridium complexes were investigated. The effect of the przl-substituents on the emission colors of the complexes was not significant. On the other hand, the luminous efficiencies of Ir(4-Me-2,3-dpq)2(przl-C6H5) and Ir(4-Me-2,3-dpq)2(przl-C6H4CH3) were higher than that of Ir(4-Me-2,3-dpq)2(acac).  相似文献   

17.
2‐Pyridone (2‐oxo­pyrimidine) forms hydrogen‐bonded com­plexes with di­carboxyl­ic acids, the molar ratio of 2‐pyridone/di­carboxyl­ic acid being 2:1 for the complexes with oxalic acid (ethanedioic acid), 2C5H5NO·C2H2O4, (I), and trans‐β‐hydro­muconic acid (trans‐hex‐3‐enedioic acid), 2C5H5NO·C6H8O4, (II), and 1:1 for the complexes with trans‐glutaconic acid (trans‐pent‐2‐enedioic acid), C5H5NO·C5H6O4, (III), and l ‐­tartaric acid (l ‐2,3‐di­hydroxy­butane­dioic acid), C5H5NO·C4H6O6·H2O, (IV). Common features in the hydrogen‐bonding patterns were found for the centrosymmetric and non‐centrosymmetric acids, respectively. The 2‐pyridone mol­ecule takes the lactam form in these crystals.  相似文献   

18.
While six‐coordinate iron(III) porphyrin complexes with pyridine N‐oxides as axial ligands have been studied as they exhibit rare spin‐crossover behavior, studies of five‐coordinate iron(III) porphyrin complexes including neutral axial ligands are rare. A five‐coordinate pyridine N‐oxide–5,10,15,20‐tetraphenylporphyrinate–iron(III) complex, namely (pyridine N‐oxide‐κO)(5,10,15,20‐tetraphenylporphinato‐κ4N,N′,N′′,N′′′)iron(III) hexafluoroantimonate(V) dichloromethane disolvate, [Fe(C44H28N4)(C5H5NO)][SbF6]·2CH2Cl2, was isolated and its crystal structure determined in the space group P. The porphyrin core is moderately saddled and the Fe—O—N bond angle is 122.08 (13)°. The average Fe—N bond length is 2.03 Å and the Fe—ONC5H5 bond length is 1.9500 (14) Å. This complex provides a rare example of a five‐coordinate iron(III) porphyrin complex that is coordinated to a neutral organic ligand through an O‐monodentate binding mode.  相似文献   

19.
Some pentacoordinated tributyltin(IV) complexes of sterically hindered Schiff bases of heterocyclic β-diketones having the general formula Bu3SnL (where LH = RC:NZC:C(OH)N(C6H5)N:CCH3 where R = –CH3, –C6H5, –C6H4Cl (p) and Z = –C6H4Cl(m), –C6H4Cl(p) and –C6H4Cl(p)] were screened for their antimicrobial activity against the bacterial strain (Bacillus subtillis) and fungal strains (Candida albicans and Aspergillas niger). These monomeric pentacoordinated tributyltin(IV) complexes possess six membered ring which provide stability to the complexes. These complexes possess Sn←N bond scaffold which impart biological activity in tributyltin(IV) complexes. Antimicrobial bioassay results reveal that these tributyltin(IV) complexes derived from sterically hindered Schiff bases of heterocyclic β-diketones were possess more inhibition potential than their respective parent ligands. These pentacoordinated tributyltin(IV) complexes may used as antibiotic drug in future.  相似文献   

20.
Organotin complexes of the general formula R2Sn(Cl)L have been synthesized where R = CH3, C2H5, C4H9, C6H5, C7H7, and L = 1-piperidinecarbodithioic acid. These complexes have been characterized by elemental analysis, FT-IR, 1H NMR and mass spectrometry. The spectroscopic and XRD data shows that the dithiocarbamate ligand acts as a bidentate ligand. These complexes were also tested for biocidal activity. Thermal studies of the reported complexes have been carried out to investigate the degradation pattern and thermal stability while kinetic parameters were calculated from the thermogravometric (TG) trace. Silent features of X-ray structures for (1) and (4) are also given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号