首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 72 毫秒
1.
采用磁性复合流体(MCF)对BK7玻璃进行定点抛光实验,对抛光斑进行三维模型重构,并对磁场空间分布进行仿真与实验分析,阐明抛光材料去除机理,确定材料去除率、表面粗糙度及硬度随抛光时间的变化规律,建立了材料去除量与磁通密度的关系曲线。实验结果表明:抛光形成的抛光斑表面轮廓为蝶形,其沿抛光轮轴向的截面轮廓呈"W"形;材料去除量与磁场强弱及抛光时间密切相关,抛光深度去除率最高可达553 nm/min;表面粗糙度随抛光时间的增加先上升后下降,MCF抛光可获得表面粗糙度Ra6 nm的光滑表面,且粗糙度与硬度呈现一定的正相关关系。  相似文献   

2.
提出了用磁场引导水溶还原法制备磁性金属纤维的新思想,分析了用这种方法制备磁性金属纤维的机理和动力学过程,给出了实验结果.实验表明,磁场引导水溶还原法适合于制备磁性金属纤维,且纤维的直径在μm和亚μm数量级.  相似文献   

3.
采用低熔点金属伍德合金研究了工频脉冲磁场对金属液面波动行为的影响规律:工频脉冲磁场的周向电磁力搅拌熔体使其形成环状涡流;而径向电磁力在其表现为压力作用时使熔体在中心形成圆形液柱,表现为拉力作用时使熔体在中心形成圆形漩涡.另外,采用Sn-20%Pb合金研究了工频脉冲磁场对铸坯质量的影响:工频脉冲磁场的作用不仪使Sn-Pb...  相似文献   

4.
利用数学解析方法对脉冲磁场细晶技术的电磁力特性进行了理论分析.分析结果显示,单个放电周期内,随着时间变化,熔体内部脉冲电磁力方向发生瞬时改变;在某个时间段范围内,熔体内部与外部存在电磁力方向不一致的现象,而且单个周期内电磁力存在衰减特性.以上这些特性,是造成脉冲磁场致熔体振荡的主要原因.另外,对于本研究采用的工频脉冲磁...  相似文献   

5.
磁场引导水溶还原法制备磁性金属纤维   总被引:18,自引:0,他引:18  
提出了用磁场引导水溶还原法制备磁性金属的新思想,分析了用这种方法制备磁性金属纤维的机理和动力学过程。  相似文献   

6.
本文研究电机和电工中的磁场分布和电磁力方向问题。根据试验研究,本文提出一个新的概念:磁场“最佳增能”特性。新的概念可以从理论上决定电机中的电磁力方向。实验和分析证明,电机中的电磁力及其方向是难以正确的使用安培定律(左手定则)和表面张力法加以说明的。新的概念还可以正确决定磁场分布图形。新的方法在许多场合表现出它的简炼性和物理概念鲜明性。  相似文献   

7.
针对霍尔元件在不同磁场以及不同间距的磁钢中所产生的霍尔电势,进行了测试和分析,并且得出结论,利用霍尔元件在磁钢边缘进行相对位移,可实现空间力或空间位移的分解。  相似文献   

8.
对处于交变磁场作用下的磁性磨料颗粒的受力和运动规律进行了分析和描述,为交变磁场作用下的磁粒研磨光整加工技术提供了新的思路和工艺选择。  相似文献   

9.
磁性液体的场致透光特性   总被引:5,自引:0,他引:5  
研究了磁性液体在平行于激光照射方向具有不同梯度的外磁场作用下,其光透射率随时间的变化情况,并从理论上定性分析导致出现这种现象的内在因素,以及磁性微粒在外加梯度磁场的作用下在磁性液体内部的微观运动情况.  相似文献   

10.
应用WKB方法计算了圆柱金属体中带电粒子在外磁场中磁性的量子尺寸效应。结果表明,金属圆柱体半径越小,带电粒子的抗磁性越强,当金属圆柱体半径为100nm左右时,其抗磁性是Landau抗磁性的10^4~10^6倍。另外,当圆柱体的半径比最大抗磁性半径还小时,带电粒子的抗磁性有振荡行为。  相似文献   

11.
从电流观点和磁荷观点两个角度讨论了磁感应强度B 和磁场强度H 两个物理量,旨在加深对两个物理量含义的理解.  相似文献   

12.
在永磁体上加上螺线管的这种结构称为电磁永磁混合结构,这种结构可以调节部分磁场强度,从而调节所受力的大小。本文对混合结构与单体永磁体之间产生的排斥力分别进行了等效计算法和数值计算法计算,并进行了比较,结果表明等效计算法虽简单、易理解,但它是基于磁路的计算,因此计算误差太大。而数值计算法中的有限单元法虽繁锁,但它是其于有限元件分析,精确可靠。并利用ANSYS分别对混合式和纯电磁铁进行有限元分析,通过对比证明了混合悬浮系统在排斥力方面的优越性。  相似文献   

13.
在磁力研磨中采用永磁铁磁路的研究   总被引:4,自引:0,他引:4  
在磁力研磨中采用永磁铁磁路 ,以代替电磁铁磁力系统 ,研究磁铁在磁路中的分布 ,磁路的计算方法 ,给出磁路计算的一般步骤 ,以及实用计算举例 ,用漏磁系数法计算磁路。指出在选择磁路结构时 ,需结合磁铁材料性能来考虑磁体尺寸 ,并使磁体尽量靠近加工间隙。  相似文献   

14.
梯度磁场中燃煤PM10聚并实验   总被引:1,自引:0,他引:1  
在永磁环梯度磁场中对0.023~9.318 μm粒径范围内东胜煤灰和大同煤灰进行了聚并实验研究.采用流化床气溶胶发生器对飞灰进行气溶胶化,采用低压电称冲击器在线测量聚并前后飞灰粒子的数目浓度.结果表明:在相同条件下,磁性较强的东胜煤灰粒子的聚并脱除效率高于磁性较弱的大同煤灰粒子的聚并脱除效率;增大飞灰粒子质量浓度或延长粒子的聚并时间,飞灰粒子的分级聚并脱除效率和整体聚并脱除效率提高,且东胜煤灰比大同煤灰整体脱除效率提高更为迅速;提高气流平均速度,飞灰粒子的分级聚并脱除效率和整体聚并脱除效率降低;中间粒径粒子的聚并脱除效率高于小粒子和大粒子的聚并脱除效率;随整体聚并脱除效率的提高,分级聚并脱除效率最大值对应的粒径减小,粒子数目中位直径减小.  相似文献   

15.
利用FEMLAB软件模拟出在2D和3D的情况下微电磁石的电磁感应对磁场强度的影响.因为在3D界面下不能完全将实际模型重建,采用缩小实体的方法,将缩小后的模型在2D环境下模拟,可以显示出与大空间范围构造相似的仿真结果.3D仿真结果显示的大体结构及空间范围的情况与2D仿真结果大致相同,且3D仿真结果的误差在正常情况下至少为10%,因此3D与2D仿真环境下的磁体结构是可以比较的.  相似文献   

16.
Nd-Fe-B-Sn合金的显微组织及其对磁性能的影响   总被引:1,自引:0,他引:1  
 用粉末冶金烧结法制备了Nd-Fe-B,Nd-Fe-B-Sn和Nd-Dy-Fe-B-Sn永磁合金,用SEM和TEM分析了合金的显微形貌及相结构,并用永磁参量测量仪和振动样品磁强计(VSM)测量了合金的磁性能.研究表明,添加在合金中的Sn元素主要分布在富钕相中,且改善了富钕相与基体相(Nd2Fe14B)的润湿性.合金的相组成仍然是Nd2Fe14B相(Φ相)、富钕相、富硼相(η相),添加锡没有导致合金中析出新相.但是,添加锡使Nd-Fe-B系合金的室温磁性受到损害,然而却使合金在较高温时的矫顽力温度系数和开路磁通不可逆损失明显减小.锡元素对合金显微组织的改善,可能是合金高温磁性能改善的根本原因.  相似文献   

17.
为了更加准确地计算永磁直线电机矩形开槽情况下的气隙磁场分布,提出了一种改进的许-克变换解析计算方法.首先,采用等效磁化电流法,建立永磁直线电机初级铁芯无槽情况下的气隙磁场模型;其次,根据永磁直线电机的结构尺寸,并考虑初级铁芯矩形开槽的影响,对传统的许-克变换方法加以改进;然后,利用改进的许-克变换方法,解析计算矩形开槽永磁直线电机的气隙磁场分布.理论分析和真实的数据计算结果表明,与传统的许-克变换方法相比,所提出的方法更接近于有限元软件的计算结果.最后,根据改进的许-克变换解析计算方法,对电机气隙磁场分布进行优化设计,试制了一台短次级圆筒型永磁直线发电机.  相似文献   

18.
从磁致伸缩效应的基本原理出发,研究磁致伸缩换能效率与偏置磁场的对应关系,得到了换能效率的评价方法和用于评价永久磁铁及直流磁化线圈磁化效果的等效方法.该方法由永久磁化器和直流线圈同时提供方向相反的偏置磁场,通过调节线圈的电流,得到磁致伸缩换能效率与电流之间的关系;再利用换能效率仅与偏置磁场的大小有关而与偏置磁场的方向无关的对称特性,确定叠加偏置磁场的平衡点即叠加磁场强度为零的点,从而得到永久磁化器和直流线圈的等效关系.最后通过实验对等效关系进行了验证.  相似文献   

19.
纳米双相钕铁硼永磁合金的织构及磁畴   总被引:3,自引:1,他引:3  
为开发纳米复合永磁材料高磁能积的潜力,用熔体快淬法制备各向异性的纳米双相快淬带。X光衍射结果表明,Nd9Fe85-xNbxB6(x=0,0.5,1.0)快淬带中存在垂直于带面的Nd2Fe14B[00L]织构,其自由面上的织构强于贴辊面。x=1.0时,在15m.s-1的快淬速度下的择优取向度为94%。磁力显微镜观察表明晶粒间存在强烈的交换耦合作用。x=0.5时的快淬带具有较强交换耦合作用及高织构度,因此具有最佳磁性能。其剩余磁极化强度为1.130T,内禀矫顽力为519.8kA.m-1,最大磁能积为121.2kJ.m-3。  相似文献   

20.
一种永磁轴承的设计和磁场分布的解析计算   总被引:1,自引:0,他引:1  
从永磁体的分子电流观点出发,应用矢量磁位法,对轴向均匀充磁的永磁环,建立用完全椭圆积分表示的永磁环外部空间磁势和磁场分布的解析计算表达式.根据矢量迭加原理,应用该公式可计算1块至多块永磁环并列放置时其外部空间的磁场分布.通过对单块永磁环磁场分布的仿真计算和实验测试数据比较,磁感应强度计算误差不超过8%,验证了计算公式的正确性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号