首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Equilibrium (based on Henry constants) and kinetic (based on relaxation‐time constants or rather macropore transport diffusivities) selectivities for commercial zeolite and carbon‐molecular‐sieve (CMS) adsorbents were compared. Adsorption isotherms were recorded at ?20°. The frequency‐response (FR) sorption‐rate spectra were determined in the range of ?78 and 70° at 133 Pa. In particles of a larger size than 1.0 mm, macropore diffusion governed the rate of sorption mass transport in both types of microporous materials. The differences in the intercrystalline diffusivities established the kinetic separation of the gases notwithstanding the essential importance of interactions in the micropores. Zeolites seem to be more advantageous for a dynamic separation of CO2 and CH4 than CMS 4A. With the CO2 and CO pair, the CMS is characterized by short characteristic times which, together with a good separation factor, is a double advantage in a short‐cycle adsorption technology. Upon comminution of the carbon pellets, intercrystalline‐diffusion resistance can be completely removed by using CMS 4A adsorbent particles with a diameter smaller than 1 mm. The carbonization of spruce‐wood cubes resulted in an excellent carbon honeycomb structure, which seems to be ideal from a dynamic point of view for applications in short‐cycle adsorption‐separation technologies. In the development of adsorbents, the use of the FR method can be beneficial.  相似文献   

2.
Carbon molecular sieves (CMS) were prepared from Greek lignite by a thermal treatment technique involving three sequential stages: carbonization, followed by activation with an oxidizing agent, and aperture modification by coke deposition. Adsorption of N2 at 77 K and CO2 at 298 K was used for the characterization of products. Molecular sieving properties were examined by measuring the adsorption kinetic curves of CO2 and CH4 at room temperature. Activated samples with the highest surface area were selected for CMS production by employing a propylene cracking technique. High temperatures resulted in the production of materials with large differences in their BET and CO2 surface areas. CO2-CH4 selectivity ratios estimated from the adsorption kinetic curves were high for these samples. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
This paper presents a comparative study between a carbon molecular sieve (CMS) membrane and a commercial CMS adsorbent; these materials are suited for selective gas permeation and adsorption-based gas separations, respectively. The purpose of this analysis is to better understand the mass transport mechanism in CMS membranes and how it is related to the material's structure. The structural characterization based on the adsorption of CO2 at 0 °C revealed that the adsorbent has a greater micropore volume, a smaller mean pore width and a micropore size distribution shifted to the left, when compared to the membrane. This translates into a lower adsorption capacity of the membrane towards N2, Ar, CO2 and O2 at 29.5 °C and 0–7 bar. The adsorption kinetics were also studied and the pressure-dependence of the apparent time constants established; different models were used to predict the experimental results, emphasizing the very important role of the ultramicroporosity on the properties of the materials. The CMS membrane exhibited a pore blockage effect when permeating O2 and CO2. Further morphologic characterization was performed by SEM, X-ray diffraction and mercury porosimetry.  相似文献   

4.
The structure of the molecular complex between the chiral selector (+)1-(3-allylpropyl)-(5R,8S,10R)-N,N-diethyl-N-[6-methylergolin-8-yl]urea, C23H33N4O, (allyl-terguride) and the more retained (S) isomer of dansyl-serine, C15H19N2O5S, has been determined. It is part of a study on the chiral recognition mechanism of ergot alkaloids, when used in chiral stationary phases for the separation of racemic mixture of organic acids by liquid chromatographic methods. At the pH of the crystallization conditions, which mimick those corresponding to the best enantiodiscriminative activity, each molecule of (S)-dansyl-serine is locked by hydrogen bonds between two translation related molecules of allyl-terguride forming a infinite chains in a 1:1 molecular ratio.  相似文献   

5.
A kinetic study has been carried out on the oxidation of N, N, N′, N′,-tetraethyl-p-phenylenediamine (TEPD) by metal ion like Ce4+, oxoanions viz., MnO4? and Cr2O72?; peroxides such as peroxomonosulphate (PMS), peroxodisulphate (PDS), and H2O2; and halogens namely Cl2, Br2, and I2. The fast kinetics of the formation and decay of the radical cation TEPD˙+ have been analyzed at 565 nm by the stopped-flow technique under pseudo-first-order conditions. From the kinetic data, it has been inferred that the reactions were found to be of first-order with respect to [TEPD] and [oxidant] but over all it has been of second-order. The observed second-order rate constants in both the formation and decay of TEPD˙+ has been correlated with the oxidation potentials of the various oxidants employed in this study. The effect of pH on the oxidation has been investigated in the formation and decay of TEPD˙+ as well as reduction studies have also been carried out using dithionite which has been found to regenerate the TEPD from the TEPD˙+ and the corresponding rate constant has also been determined. Besides these, this article also explains how the TEPD, which forms TEPD˙+ acts as a better electron relay than TMPD(N, N, N′, N′-tetramethyl-p-phenylenediamine) which forms TMPD˙+, even though both of them undergo one-electron oxidation and are used in the chemical routes to solar energy conversions. The observed rate constants for electron transfer were correlated theoretically using Marcus theory. The observed and calculated rate constants have good correlation. © 1995 John Wiley & Sons, Inc.  相似文献   

6.
Summary: Molecular dynamics simulation studies of the translocation of charged homopolymers of length, N, driven by an electric potential gradient through a channel have been performed. We find that the translocation time, τ, displays an inverse power dependence on the temperature of the simulation τ ∼ (TT0)−7/4, which is in very good agreement with experimental results. In addition, the dependence of τ on the driving field strength and the velocity of translocation on the polymer length N have also been obtained. The results suggest that such minimalist models are useful in modelling biological processes and that the molecular dynamics method is a suitable approach for carrying out these simulations.

Snapshot of the polymer during the simulation.  相似文献   


7.
Polyrotaxane is a supramolecular assembly consisting of multiple cyclic molecules threaded by a linear polymer. One of the unique properties of polyrotaxane is molecular mobility, cyclic molecules moving along the linear polymer. Molecular mobility of polyrotaxane surfaces affects cell spreading, differentiation, and other cell-related aspects through changing subcellular localization of yes-associated proteins (YAPs). Subcellular YAP localization is also related to cell senescence derived from oxidative stress, which is known to cause cancer, diabetes, and heart disease. Herein, the effects of polyrotaxane surface molecular mobility on subcellular YAP localization and cell senescence following H2O2-induced oxidative stress are evaluated in human mesenchymal stem cells (HMSCs) cultured on polyrotaxane surfaces with different molecular mobilities. Oxidative stress promotes cytoplasmic YAP localization in HMSCs on high-mobility polyrotaxane surfaces; however, low-mobility polyrotaxane surfaces more effectively maintain nuclear YAP localization, exhibiting lower senescence-associated β-galactosidase activity and senescence-related gene expression and DNA damage than that seen with the high-mobility surfaces. These results suggest that the molecular mobility of polyrotaxane surfaces regulates subcellular YAP localization, thereby protecting HMSCs from oxidative stress-induced cell senescence. Applying the molecular mobility of polyrotaxane surfaces to implantable scaffolds can provide insights into the prevention and treatment of diseases caused by oxidative stress.  相似文献   

8.
The rates of heat release in the nitrogen dioxide—n-decane system at a molar ratio of nitrogen oxides ton-decane (β) from 2.4·10−3 to 3.1 and gaseous volumes per mole ofn-decane (V(g)) equal to 0.05–4.5 were studied in the 55.2–92.8 °C temperature range. The initial rate of the process is determined by the interaction of NO2 withn-decane. The equilibrium constants of dissociation of N2O4 inn-decane and Henry's constants of NO2 and N2O4 in ann-decane solution were determined by complex analysis of the thermodynamic equilibrium in the NO2n-decane system and dependences of the initial rates onV(g) and β. The experimentally observed self-acceleration of the process in the region of high β and lowT values was suggested to be due to the reaction of N2O4 with intermediate oxidation products. The rate constants of the reaction of NO2 withn-decane were compared with analogous values determined in its mixtures with HNO3 solutions. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 1789–1794, October, 1997.  相似文献   

9.
Styrene is oxidized by 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ), affording hydroquinone mono(2-phenylethyl) ether. Kinetic studies (50°C in CHCl3) show that the reaction is faster under N2 than under air and takes placevia intramolecular H-atom transfer within the 1:1 and 1:2 DDQ-styrene charge-transfer complexes. The semiquinone radical intermediate is reoxidized to DDQ by O2 when the latter is present, therefore, the apparent rate of DDQ reduction is lower. Stability constants of the CT-complexes and kinetic parameters for the oxidation are reported.  相似文献   

10.
Ab initio SCF and SCF -CI calculations with the STO -3G basis set have been performed to investigate the structures and energies of water–cytosine complexes and the intermolecular water–cytosine surface in the cytosine molecular plane. Although there are six nominal hydrogen-bonding sites in this plane, only three dimers are distinguishable in the ground state. The most stable has an energy of ?10.7 kcal/mol, and is found in the N1? H and O2 region. An asymmetric cyclic structure in which the water molecule bridges adjacent N1? H and O2 sites is the preferred form of this dimer. The dimer in the region between O2 and N4? H′ of the amino group is slightly less stable at ?10.4 kcal/mol, and also has an asymmetric cyclic structure as the preferred structure, with the water molecule bridging amino N4? H′ and N3 hydrogen-bonding sites. The third dimer has the amino group as the proton donor to water through the hydrogen cis to C5, and a stabilization energy of ?7.0 kcal/mol. The water-cytosine surface is characterized by deeper minima and higher barriers than the water-thymine surface and by a decreased mobility of the water molecule between adjacent hydrogen-bonding sites. Absorption of energy by the C2?O group leads to the first n → π* excited state in which interactions of water with O2 are broken. The water-cytosine dimers remain bound in this state, but may change structurally. In the second n → π* state interactions between water and N3 are no longer stabilizing. As a result, the dimer in the O2 and N4? H′ region collapses to either a dimer with water the proton donor to O2, or one with N4? H′ the proton donor to water. The other two dimers remain bound. All excited dimers are destabilized on vertical excitation relative to the ground state.  相似文献   

11.
A novel porphyrin-salen compound and corresponding zinc(Ⅱ)porphyrin-salen compound(ZnPSC_(10))cova-lently linked by a flexible alkoxy chain(—O(CH)_(10)O—)have been synthesized and characterized.Molecular rec-ognition of three N-heterocyclic guests,pyridine,1,4-diazobycyclo[2,2,2]octane(DABCO)and pyrazine,with thehost ZnPSC_(10)was investigated.Binding constants were determined by means of UV-vis titration method.Thebinding mode of ZnPSC_(10)with DABCO has been discussed in detail by using ~1H NMR.It was found that the con-formations of the recognition system changed from closed to open with the adding of DABCO.  相似文献   

12.
According to basic phenomenological models describing the solution‐diffusion based mechanism of penetrant diffusion in dense polymers, a connection between the diffusive transport of gas molecules in a polymeric matrix and the molecular mobility of that matrix on a certain length scale is, in principle, established for a long time. However, experimental data directly showing this correlation are rare. The investigation of a series of nanocomposites based on a polyhedral oligomeric silsesquioxane (POSS) and a polycarbonate matrix allows a systematic change of the molecular mobility on a local length scale (β‐relaxation) and of the corresponding activation energy EA, both determined by broadband dielectric spectroscopy. Independently, activation energies of penetrant diffusion (ED) of these nanocomposites were determined for N2, O2, CO2, and CH4 and a clear linear correlation between the two activation energies was established for the first time. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013 , 51, 1593–1597  相似文献   

13.
Summary. The first representative of the N-silylmethylamides of phosphoric acid O=P[NMe(CH2SiMe n (OEt)3-n ]3 have been synthesized by interaction of MeNHCH2SiMe n (OEt)3-n (n = 2, 3) with POCl3. The interaction of the N,N′,N″-trimethyl-N,N′,N″-tris[(ethoxydimethyl- silyl)methyl]triamide phosphoric acid with BF3·Et2O or BCl3 results in the formation of the N,N′,N″-trimethyl-N,N′,N″-tris[(fluorodimethyl-silyl)methyl]triamide phosphoric acid or N,N′,N″-trimethyl-N,N′,N″-tris[(chlorodimethylsilyl)methyl]triamide phosphoric acid. NMR data show on the tetracoordinate state of silicon in these products. Professor Vadim Aleksandrovich Pestunovich, our chief, teacher and friend died on July 4th, 2004  相似文献   

14.
Low temperature ammonia oxidation on MoO3, Fe2O3, Cr2O3, and ZnO is studied by the spectrokinetic method. It is shown that the following adsorbed species are intermediates in this reaction: NH3 and N2O on Fe2O3 and ZnO; NH3, N2O, and NO on Cr2O3. All of the detected intermediates are used to construct the mechanism of the process. In the framework of the proposed mechanism, stationary and nonstationary spectral and kinetic data are quantitatively processed. The dependence of the rate constants of the same steps on different oxides on their physicochemical properties is discussed.  相似文献   

15.
Metal oxides are stable and highly durable catalysts for the selective catalytic reduction (SCR) of NO by hydrocarbons and potential candidates for practical use. This review focuses on the development as well as the fundamental understanding of metal oxide based catalysts for selective reduction of NO by hydrocarbons. Our studies on the SCR-deNOx properties of Ga2O3/Al2O3, Cu-Al2O3, and Ag-Al2O3 catalysts are presented and it is attempted to demonstrate the advantages of this type of catalysts. On the basis of several spectroscopic characterizations, the effect of important factors, such as dispersion, coordination, and the electronic states of the metal cation, on the intrinsic catalytic activity are quite well clarified. From the in situ FTIR results, the reaction mechanism is understood in terms of formation and reaction of surface molecules. The structural and kinetic information obtained at the molecular level provides a useful strategy for designing better deNOx catalysts using metal oxides.  相似文献   

16.
M. A. Ahmad 《Adsorption》2009,15(5-6):489-495
Application of carbon molecular sieve (CMS) for gas separation has been found much attention recently. In this work, CMS was prepared from locally available palm shell through carbonization, steam activation and carbon vapour deposition (CVD) technique. After carbonization step, the char produced was subjected to steam activation at various activation times. The activated carbon obtained at 53.2% burn-off, which contain the highest amount of micropore volume was further used in CVD step by using benzene vapour at various deposition conditions. The performance of CMSs produced was examined by assessing the adsorption kinetics of O2, N2, CO2 and CH4 gases. All CMS samples showed a small N2 and CH4 uptake compared to the O2 and CO2. The suitable conditions for CVD were found at 800°C, 30 min and 30 vol% benzene of deposition temperature, time and benzene concentration, respectively. At this point the O2/N2 and CO2/CH4 uptake ratios arrived 7.1 and 16.0, respectively.  相似文献   

17.
A series of neutral pentacoordinate silicon(IV) complexes with a SiO3NC, SiO2SNC, SiO2SeNC, SiO2N2C, SiOSN2C, or SiOSeN2C skeleton was synthesized and structurally characterized by multinuclear NMR spectroscopy in the solid state and in solution and by single‐crystal X‐ray diffraction. The compounds studied contain a tridentate dianionic O,N,O or N,N,O ligand, an anionic PhX ligand (X = O, S, Se), and a phenyl group. The structures, NMR spectroscopic parameters, and chemical properties of these silicon(IV) complexes were compared with those of related compounds that contain a tridentate dianionic S,N,O ligand instead of the O,N,O or N,N,O ligand.  相似文献   

18.
Review of mean amplitudes of vibration for inorganic six-atomic molecules from spectroscopic calculations and electrondiffraction-data. The work contains new results of spectroscopic mean amplitudes and force constants for a number of molecules, viz.: S6, N2O4, B2F4, N2H4, N2F4, P2I4 and SOF4.  相似文献   

19.
The Raman spectra of N2O4 solutions in organic solvents have been recorded. The frequencies ofv 1,v 2, andv 3 bands of N2O4 increase with increasing solvent electron-donor properties. Especially large changes ofv 3 N-N stretching band have been observed (254.5 cm–1 in n-hexane, 276.5 cm–1 in 1,4-dioxane). The ab initio calculations have shown that the interaction between N2O4 and electron-donor molecules causes an increase of N-N and N-O stretching and O-N-O bending force constants of N2O4 in agreement with the results of Raman study.  相似文献   

20.
Carbon molecular sieves (CMS) have been prepared from locally available palm shell of Tenera type by a thermal treatment technique involving carbonization followed by steam activation and benzene deposition technique. Carbonization of the dried palm shells was done at 900 °C for duration of 1 h followed by steam activation at 830 °C for 30–420 min to achieve activated carbons with different degree of burn-offs. The highest micropore volume of activated carbon obtained at 53.2% burn-off was found suitable to be used as a precursor for CMS production. Subsequent benzene deposition onto activated samples at temperature range from 600 to 900 °C for various benzene concentrations have resulted in a series of CMS with different kinetic selectivities. The molecular sieving behaviour of the CMS products was assessed by kinetic adsorption isotherms of O2, N2, CO2 and CH4 at room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号