首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dynamic behavior ofa Griffith permeable crack under harmonic anti-plane shearwaves in the piezoelectric materials is investigated by use of the non-local theory.To overcome themathematical difficulties,a one-dimensional non-local kernel is used instead of a two-dimensionalone for the anti-plane dynamic problem to obtain the stress and the electric displacement near thecrack tips.By means of Fourier transform,the problem can be solved with a pair of dual integralequations that the unknown variable is the jump of the displacement across the crack surfaces.These equations are solved with the Schmidt method and numerical examples are provided.Con-trary to the previous results,it is found that no stress and electric displacement singularities arepresent at the crack tip.The finite hoop stress and the electric displacement depend on the cracklength,the lattice parameter of the materials and the circle frequency of the incident waves.Thisenables us to employ the maximum stress hypothesis to deal with fracture problems in a naturalway.  相似文献   

2.
In this paper, the dynamic behavior of two parallel symmetric cracks in piezoelectric materials under harmonic anti-plane shear waves is investigated by use of the non-local theory for permeable crack surface conditions. To overcome the mathematical difficulties, a one-dimensional non-local kernel is used instead of a two-dimensional one for the problem to obtain the stress occurs near the crack tips. By means of the Fourier transform, the problem can be solved with the help of two pairs of dual integral equations that the unknown variables are the jumps of the displacement along the crack surfaces. These equations are solved using the Schmidt method. Numerical examples are provided. Contrary to the previous results, it is found that no stress and electric displacement singularity is present near the crack tip. The non-local elastic solutions yield a finite hoop stress near the crack tip, thus allowing for a fracture criterion based on the maximum stress hypothesis. The finite hoop stress at the crack tip depends on the crack length, the frequency of the incident wave, the distance between two cracks and the lattice parameter of the materials, respectively. Contrary to the impermeable crack surface condition solution, it is found that the dynamic electric displacement for the permeable crack surface conditions is much smaller than the results for the impermeable crack surface conditions. The results show that the dynamic field will impede or enhance crack propagation in the piezoelectric materials at different stages of the dynamic load.  相似文献   

3.
In this paper, the non-local theory of elasticity is applied to obtain the behavior of a Griffith crack in the piezoelectric materials under anti-plane shear loading for permeable crack surface conditions. By means of the Fourier transform the problem can be solved with the help of a pair of dual integral equations with the unknown variable being the jump of the displacement across the crack surfaces. These equations are solved by the Schmidt method. Numerical examples are provided. Unlike the classical elasticity solutions, it is found that no stress and electric displacement singularity is present at the crack tip. The non-local elastic solutions yield a finite hoop stress at the crack tip, thus allowing for a fracture criterion based on the maximum stress hypothesis. The finite hoop stress at the crack tip depends on the crack length and the lattice parameter of the materials, respectively. The project supported by the National Natural Science Foundation of China (50232030 and 10172030)  相似文献   

4.
In this paper, the scattering of harmonic anti-plane shear waves by a finite crack in infinitely long strip is studied using the non-local theory. The Fourier transform is applied and a mixed boundary value problem is formulated. Then a set of dual integral equations is solved using the Schmidt method instead of the first or the second integral equation method. A one-dimensional non-local kernel is used instead of a two-dimensional one for the anti-plane dynamic problem to obtain the stress occurring at the crack tips. Contraty to the classical elasticity solution, it is found that no stress singularity is present at the crack tip. The non-local dynamic elastic solutions yield a finite hoop stress at the crack tip, thus allowing for a fracture criterion based on the maximum dynamic stress hypothesis. The finite hoop stress at the crack tip depends on the crack length, the width of the strip and the lattice parameter. Supported by the Post Doctoral Science Foundation of Heilongjiang Province, the Natural Science Foundation of Heilongjiang Province and the National Foundation for Excellent Young Investigators.  相似文献   

5.
In this paper, the dynamic interaction between two collinear cracks in a piezoelectric material plate under anti-plane shear waves is investigated by using the non-local theory for impermeable crack surface conditions. By using the Fourier transform, the problem can be solved with the help of two pairs of triple integral equations. These equations are solved using the Schmidt method. This method is more reasonable and more appropriate. Unlike the classical elasticity solution, it is found that no stress and electric displacement singularity is present at the crack tip. The non-local dynamic elastic solutions yield a finite hoop stress at the crack tip, thus allowing for a fracture criterion based on the maximum dynamic stress hypothesis. The project supported by the Natural Science Foundation of Heilongjiang Province and the National Natural Science Foundation of China(10172030, 50232030)  相似文献   

6.
A non-local theory of elasticity is applied to obtain the dynamic interaction between two collinear cracks in the piezoelectric materials plane under anti-plane shear waves for the permeable crack surface boundary conditions. Unlike the classical elasticity solution, a lattice parameter enters into the problem that make the stresses and the electric displacements finite at the crack tip. A one-dimensional non-local kernel is used instead of a two-dimensional one for the anti-plane dynamic problem to obtain the stress and electric displacement near the crack tips. By means of the Fourier transform, the problem can be solved with the help of two pairs of triple integral equations in which the unknown variable is the jump of the displacement across the crack surface. The solutions are obtained by means of the Schmidt method. Crack bifurcation is predicted using the strain energy density criterion. Minimum values of the strain energy density functions are assumed to coincide with the possible locations of fracture initiation. Bifurcation angles of ±5° and ±175° are found. The result of possible crack bifurcation was not expected before hand.  相似文献   

7.
In this paper, the dynamic behavior of two collinear cracks in the anisotropic elasticity material plane subjected to the harmonic anti-plane shear waves is investigated by use of the nonlocal theory. To overcome the mathematical difficulties, a one-dimensional nonlocal kernel is used instead of a two-dimensional one for the anti-plane dynamic problem to obtain the stress field near the crack tips. By use of the Fourier transform, the problem can be solved with the help of a pair of triple integral equations, in which the unknown variable is the displacement on the crack surfaces. To solve the triple integral equations, the displacement on the crack surfaces is expanded in a series of Jacobi polynomials. Unlike the classical elasticity solutions, it is found that no stress singularity is present near crack tips. The nonlocal elasticity solutions yield a finite hoop stress at the crack tips, thus allowing us to using the maximum stress as a fracture criterion. The magnitude of the finite stress field not only depends on the crack length but also on the frequency of the incident waves and the lattice parameter of the materials.  相似文献   

8.
In this paper, the non-local theory of elasticity is applied to obtain the behavior of a Griffith crack in the piezoelectric materials subjected to a uniform tension loading. The permittivity of the air in the crack is considered. By means of the Fourier transform, the problem can be solved with the help of two pairs of dual integral equations, in which the unknown variables are the jumps of the displacements across the crack surfaces. To solve the dual integral equations, the jumps of the displacements across the crack surfaces are expanded in a series of Jacobi polynomials. Numerical examples are provided to show the effects of the crack length, the materials constants, the electric boundary conditions and the lattice parameter on the stress and the electric displacement fields near the crack tips. It can be obtained that the effects of the electric boundary conditions on the electric displacement fields are large. Unlike the classical elasticity solutions, it is found that no stress and electric displacement singularities are present at the crack tips. The non-local elastic solutions yield a finite hoop stress at the crack tips, thus allowing us to use the maximum stress as a fracture criterion.  相似文献   

9.
In this paper, the interaction of two collinear cracks in functionally graded materials subjected to a uniform anti-plane shear loading is investigated by means of nonlocal theory. The traditional concepts of the nonlocal theory are extended to solve the fracture problem of functionally graded materials. To make the analysis tractable, it is assumed that the shear modulus varies exponentially with the coordinate vertical to the crack. By use of the Fourier transform, the problem can be solved with the help of a pair of triple integral equations, in which the unknown variable is the displacement on the crack surfaces. To solve the triple integral equations, the displacement on the crack surfaces is expanded in a series of Jacobi polynomials. Unlike the classical elasticity solutions, it is found that no stress singularity is present near the crack tips. The nonlocal elastic solutions yield a finite hoop stress at the crack tip, thus allowing us to use the maximum stress as a fracture criterion in functionally graded materials. The magnitude of the finite stress field depends on the crack length, the distance between two cracks, the parameter describing the functionally graded materials and the lattice parameter of the materials.  相似文献   

10.
IntroductionThelastfourdecadeshavewitnessedtheinaugurationofanoveltheoryofmaterialbodies,namedthenon_localmechanics.ThiswasdoneprimarilyduetotheeffortsofEdelen[1],Eringen[2 ],GreenandRivlin[3].Accordingtothenon_localtheory ,thestressatapointXinabodydependsno…  相似文献   

11.
胡克强  仲政  金波 《力学季刊》2003,24(3):371-378
基于三维弹性理论和压电理论,对材料系数按指数函数规律分布的功能梯度压电板条中的反平面运动裂纹问题进行了求解。利用Fourier积分变换方法将电绝缘型运动裂纹问题化为对偶积分方程,并进一步归结为易于求解的第二类Fredholm积分方程。通过渐近分析,获得了裂纹尖端应力、应变、电位移和电场的解析解,给出了裂纹尖端场各个变量的角分布函数,并求得了裂纹尖端场的强度因子,分析了压电材料物性梯度参数、几何尺寸及裂纹运动速度对它们的影响。结果表明,对于电绝缘型裂纹,功能梯度压电板条中运动裂纹尖端附近的各个场变量都具有-1/2阶的奇异性;当裂纹运动速度增大时,裂纹扩展的方向会偏离裂纹面。  相似文献   

12.
A constant moving crack in a magnetoelectroelastic material under in-plane mechanical, electric and magnetic loading is studied for impermeable crack surface boundary conditions. Fourier transform is employed to reduce the mixed boundary value problem of the crack to dual integral equations, which are solved exactly. Steady-state asymptotic fields near the crack tip are obtained in closed form and the corresponding field intensity factors are expressed explicitly. The crack speed influences the singular field distribution around the crack tip and the effects of electric and magnetic loading on the crack tip fields are discussed. The crack kinking phenomena is investigated using the maximum hoop stress intensity factor criterion. The magnitude of the maximum hoop stress intensity factor tends to increase as the crack speed increases.  相似文献   

13.
In this paper, the interactions of multiple parallel symmetric and permeable finite length cracks in a piezoelectric material plane subjected to anti-plane shear stress loading were studied by the Schmidt method. The problem was formulated through Fourier transform into dual integral equations, in which the unknown variables are the jumps of displacements across the crack surfaces. To solve the dual integral equations, the jumps of displacements across the crack surfaces were directly expanded as a series of Jacobi polynomials. Finally, the relation between the electric field and the stress field near the crack tips was obtained. The results show that the stress and the electric displacement intensity factors at the crack tips depend on the lengths and spacing of the cracks. It is also revealed that the crack shielding effect presents in piezoelectric materials.  相似文献   

14.
In this paper, the interactions of multiple parallel symmetric and permeable finite length cracks in a piezoelectric/piezomagnetic material plane subjected to anti-plane shear stress loading are studied by the Schmidt method.The problem is formulated through Fourier transform into dual integral equations, in which the unknown variables are the displacement jumps across the crack surfaces.To solve the dual integral equations, the displacement jumps across the crack surfaces are directly expanded as a series of Jacobi polynomials.Finally, the relation between the electric field, the magnetic flux field and the stress field near the crack tips is obtained.The results show that the stress, the electric displacement and the magnetic flux intensity factors at the crack tips depend on the length and spacing of the cracks.It is also revealed that the crack shielding effect presents in piezoelectric/piezomagnetic materials.  相似文献   

15.
In this paper, the dynamic interaction of two parallel cracks in functionally graded materials (FGMs) is investigated by means of the non-local theory. To make the analysis tractable, the shear modulus and the material density are assumed to vary exponentially with the coordinate vertical to the crack. To reduce mathematical difficulties, a one-dimensional non-local kernel is used instead of a two-dimensional one for the dynamic problem to obtain stress fields near the crack tips. By use of the Fourier transform, the problem can be solved with the help of two pairs of dual integral equations, in which the unknown variables are the jumps of displacements across the crack surfaces. To solve the dual integral equations, the jumps of displacements across the crack surfaces are expanded in a series of Jacobi polynomials. Unlike the classical elasticity solutions, it is found that no stress singularity is present at the crack tips. The non-local elastic solutions yield a finite hoop stress at the crack tips. The present result provides theoretical references helpful for evaluating relevant strength and preventing material failure of FGMs with initial cracks. The magnitude of the finite stress field depends on relevant parameters, such as the crack length, the distance between two parallel cracks, the parameter describing the FGMs, the frequency of the incident waves and the lattice parameter of materials. The project supported by the National Natural Science Foundation of China (90405016, 10572044) and the Specialized Research Fund for the Doctoral Program of Higher Education (20040213034). The English text was polished by Yunming Chen.  相似文献   

16.
IntroductionInseveralpreviouspapers[1,2,3],Eringendiscussedthestateofstressnearthetipofasharplinecrackinanelasticplatesubjecttouniformtension,shearandanti_planeshear.Thefieldequationsemployedinthesolutionoftheseproblemsarethoseofthetheoryofnon_locale…  相似文献   

17.
Field equations of the non-local elasticity are solved to determine the state of stress in a plate with a Griffith crack subject to the anti-plane shear. Then a set of dual-integral equations is solved using Schmidts method. Contrary to the classical elasticity solution, it is found that no stress singularity is present at the crack tip. The significance of this result is that the fracture criteria are unified at both the macroscopic and the microscopic scales.  相似文献   

18.
功能梯度压电材料反平面裂纹问题   总被引:3,自引:1,他引:3  
胡克强  仲政  金波 《力学季刊》2002,23(1):70-76
基于三维弹性理论和压电理论,导出了材料系数在横观各向同性平面内梯度分布的压电体的状态方程,进而对材料系数指数函数规律分布的半无限大压电体中的反平面裂纹问题进行了求解,利用Fourier变换给出了半无限大压电体中位移,应力,电势及电位移的解析表达式,并求得了裂纹尖端的应力强度因子和电位移强度因子,分析了不同的非均匀材料系数及几何尺寸对它们的影响。  相似文献   

19.
Solutions are presented for the one- and two-dimensional Griffith crack problems in non-local elasticity. The displacements and stresses are determined in an elastic plate, weakened by a sharpedged line crack. The plate is loaded by a uniform tension perpendicular to the line of the crack at infinity. The non-local elastic solutions yield a finite hoop stress at the crack tip, thus allowing for a fracture criterion based on the maximum stress hypothesis.  相似文献   

20.
The method of complex function and the method of Green‘s function are used to investigate the problem of SH-wave scattering by radial cracks of any limited length along the radius originating at the boundary of an elliptical hole, and the solution of dynamicstress intensity factor at the crack tip was given. A Green‘s function was constructed for the problem, which is a basic solution of displacement field for an elastic half space containing a half elliptical gap impacted by anti-plane harmonic linear source force at any point of its horizontal boundary. With division of a crack technique, a series of integral equations can be established on the conditions of continuity and the solution of dynamic stress intensity factor can be obtained. The influence of an elliptical hole on the dynamic stress intensity factor at the crack tip was discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号