首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An attempt was made to prepare nanographite with uniform size by pyrolysis of 4-methyl pyridine (MPy), which is the structure-directing agent for the formation of GaPO4-LTA single crystals, in the GaPO4-LTA framework at 760 ℃. The as-prepared nanographite has been examined by Raman spectroscopy, transmission electron microscopy (TEM), electron spin resonance (ESR) and magnetization characterizations. The TEM image shows that the size of individual nanographite particles is about 7 nm, and it is proved that there are spins of sp^2-type (π-type) radical electrons localized on the zigzag edge sites of the nanographite. The magnetic susceptibility of the nanographite shows crossover from a high-temperature diamagnetic to a low-temperature paramagnetic behavior, in good agreement with the theoretical expectation.  相似文献   

2.
Herein, blue fluorescent carbogenic nanodots (CNDs) with room‐temperature ferromagnetism were synthesized by thermal decomposition of organic precursors at different temperatures. Photoluminescence (PL) studies show excitation‐wavelength‐dependent emission properties and PL excitation (PLE) studies confirm the triplet ground state of carbene at the zigzag edge as the fluorescent center. Room‐temperature magnetic studies reveal the ferromagnetic nature of CNDs and temperature‐dependent studies show the presence of an antiferromagnetic phase along with a ferromagnetic phase below 50 K. EPR studies reveal the presence of conduction electrons and localized spins with different g factors. Localized spins at zigzag edges are the origin of the unconventional magnetic behavior, whereas exchange coupling between conduction and localized spins are responsible for long‐range magnetic ordering.  相似文献   

3.
Variable frequency ODMR experiments on a photoexcited triplet state molecule oriented in a single crystal host have been used to show that an anticrossing exists in the energy level diagram of the guest electron spins plus host nuclear spins at cross relaxation fields. As a consequence, the rate of energy transfer between guest and host is governed by nuclear spin-spin rather than the much slower spin- lattice relaxation. This has been confirmed by a direct measurement of the cross relaxation time (110 μs) in perdeuterobenzophenone in 4,4'-dibromodiphenylether, using microwave pulse techniques.  相似文献   

4.
《中国化学快报》2023,34(1):107450
The magnetism of nanographene is dominated by the structure of its carbon skeleton. However, the magnetism engineering of nanographene is hindered due to finite precursors. Here, we demonstrate an ingenious synthetic strategy to engineer the magnetism of nanographene through hetero-coupling two precursors on Au(111) surface. Bond-resolved scanning tunneling microscopy and spectroscopy results show that two homo-coupled products host a closed-shell structure, while the products with five membered ring defects perform as an open-shell one with the total spin number of 1/2, confirmed by spin-polarized density functional theory calculations. While two hetero precursors on Au(111) substrate, the hetero-coupled products both perform as the magnetic structure with total spin quantum numbers of 1/2 and 1, resulting from carbon skeleton transformations. Our work provides an effective way to engineer the magnetism of nanographene by enriching the magnetic products simultaneous, which could be extended into other controllable magnetic nanographene instruction.  相似文献   

5.
The self-assembly of a series of hexadehydrotribenzo[12]annulene (DBA) derivatives has been investigated by scanning tunneling microscopy (STM) at the liquid/solid interface in the absence and presence of nanographene guests. In the absence of appropriate guest molecules, DBA derivatives with short alkoxy chains form two-dimensional (2D) porous honeycomb type patterns, whereas those with long alkoxy chains form predominantly dense-packed linear type patterns. Added nanographene molecules adsorb in the pores of the existing 2D porous honeycomb type patterns or, more interestingly, they even convert the guest-free dense-packed linear-type patterns into guest-containing 2D porous honeycomb type patterns. For the DBA derivative with the longest alkoxy chains (OC20H41), the pore size, which depends on the length of the alkoxy chains, reaches 5.4 nm. Up to a maximum of six nanographene molecules can be hosted in the same cavity for the DBA derivative with the OC20H41 chains. The host matrix changes its structure in order to accommodate the adsorption of the guest clusters. This flexibility arises from the weak intermolecular interactions between interdigitating alkoxy chains holding the honeycomb structure together. Diverse dynamic processes have been observed at the level of the host matrix and the coadsorbed guest molecules.  相似文献   

6.
Structural flexibility is a remarkable characteristic of coordination polymers and significant for the attainment of environmental responsivity. We have prepared a 2D cyanide-bridged MnIICrIII coordination polymer, [Mn(NNdmenH)(H2O)][Cr(CN)6].H2O (1; NNdmen = N,N-dimethylethylenediamine), with sophisticatedly arranged removable water coligands. The compound clearly showed a reversible single-crystal-to-single-crystal transformation between the 2D sheet and a 3D pillared-sheet framework of dehydrated [Mn(NNdmenH)][Cr(CN)6] (1a). The structural change was reversible and accompanied with generation/cleavage of CN-Mn bonds between 2D sheets by dehydration/hydration. Compounds 1 and 1a also exhibited a ferrimagnetic ordering at 35.2 and 60.4 K, respectively, and the magnetic characteristics were reversibly converted by guest adsorption/desorption. In addition, the dehydrated 1a demonstrated a size-selective solvent adsorption linking chemi- and physisorption processes and shrinkage/expansion of its framework. The flexible magnetic framework incorporating removable coligands delivered multifunctions with chemical response.  相似文献   

7.
第一性原理计算研究发现由于二维TiC单原子层具有高的比表面积与大量的暴露在表面的Ti原子,其是一种非常有潜力的储氢材料.计算结果显示H2可以在二维TiC单原子层表面进行物理吸附与化学吸附.其中化学吸附能为每个氢分子0.36 eV,物理吸附能是每个氢分子0.09 eV.覆盖度为1和1/4层(ML)时,H2分子在二维TiC单原子层表面的离解势垒分别为1.12和0.33 eV.因此,除了物理吸附与化学吸附,TiC表面还存在H单原子吸附.最大的H2储存率可以达到7.69%(质量分数).其中,离解的H原子、化学吸附的H2、物理吸附的H2的储存率分别为1.54%、3.07%、3.07%.符合Kubas吸附特征的储存率为3.07%.化学吸附能随覆盖度的变化非常小,这有利于H2分子的吸附与释放.  相似文献   

8.
The controlled release of drugs by biostimuli is highly desirable under physiological conditions for their potential use in advanced applications. The enzyme-inspired controlled release of cucurbituril nanovalves by using magnetic mesoporous silica nanoparticles (MSNs) in near-neutral aqueous solutions is reported for the first time. The encirclement of cucurbit[7]uril (CB[7]) onto the protonated 1,4-butanediamine stalks tethered to the external surfaces of superparamagnetic Fe(3) O(4) -embedded mesoporous silica particles leads to tight blocking of the nanopores. The supramolecular nanovalves are activated by the enzymatic decarboxylation products of lysine, cadaverine (in the protonated form), which has a high affinity for CB[7], so that the encapsulated guest molecules, calcein, in the nanopores are released into the bulk solution. The release of calcein can be controlled in small portions on command by alternating changes in enzymatic decarboxylation products and CB[7]. The amino acid derived polyamines have long been associated with cell growth and cancers. The guest molecules released from the delivery system of magnetic MSNs can act not only on sensing probes for levels of decarboxylases and polyamines, but also on efficacious drugs to specific tissues and cells for regulation of polyamine synthesis.  相似文献   

9.
Nanographene, a small piece of graphene, has attracted unprecedented interest across diverse scientific disciplines particularly in organic electronics. The biological applications of nanographenes, such as bioimaging, cancer therapies and drug delivery, provide significant opportunities for breakthroughs in the field. However, the intrinsic aggregation behavior and low solubility of nanographenes, which stem from their flat structures, hamper their development for bioapplications. Herein, we report a water‐soluble warped nanographene (WNG) that can be easily synthesized by sequential regioselective C?H borylation and cross‐coupling reactions of the saddle‐shaped WNG core structure. The saddle‐shaped structure and hydrophilic tetraethylene glycol chains impart high water solubility to the WNG. The water‐soluble WNG possesses a range of promising properties including good photostability and low cytotoxicity. Moreover, the water‐soluble WNG was successfully internalized into HeLa cells and promoted photoinduced cell death.  相似文献   

10.
第一性原理计算研究发现由于二维TiC 单原子层具有高的比表面积与大量的暴露在表面的Ti 原子,其是一种非常有潜力的储氢材料. 计算结果显示H2可以在二维TiC 单原子层表面进行物理吸附与化学吸附. 其中化学吸附能为每个氢分子0.36 eV,物理吸附能是每个氢分子0.09 eV. 覆盖度为1和1/4层(ML)时,H2分子在二维TiC 单原子层表面的离解势垒分别为1.12 和0.33 eV. 因此,除了物理吸附与化学吸附,TiC 表面还存在H单原子吸附. 最大的H2储存率可以达到7.69%(质量分数). 其中,离解的H原子、化学吸附的H2、物理吸附的H2的储存率分别为1.54%、3.07%、3.07%. 符合Kubas吸附特征的储存率为3.07%. 化学吸附能随覆盖度的变化非常小,这有利于H2分子的吸附与释放.  相似文献   

11.
The proton spins in a single crystal of fluorene have been polarized by dynamic nuclear polarization via the photoexcited triplet state of phenanthrene guest molecules. It is possible to reach an enhancement of the proton polarization of 90 at 1.2 K where the thermal equilibrium polarization is 0.033%.  相似文献   

12.
The magnetic dipole-dipole interaction between nanomagnets having huge magnetic moments can have a strength comparable to that of the van der Waals interaction between them, and it can be manipulated by applying an external magnetic field of conventional strength. Therefore, the cooperation between the dipole-dipole interaction and the applied magnetic field allows the magnetic moments of nanomagnets to be aligned and organized in an ordered manner. In this work, a network of magnetic nanoparticles connected with flexible long-alkyl-chain linkers was designed to develop a "magnetic sponge" capable of absorbing and desorbing guest molecules with changes in the applied magnetic field. The magnetization of the sponge with long-alkyl-chain bridges (30 C atoms) exhibited a 500% increase after cooling in the presence of an applied field of 7 T relative to that in the absence of a magnetic field. Cooling in a magnetic field leads to anisotropic stretching in the sponge due to reorganization of the nanomagnets along the applied field, in contrast to the isotropic organization under zero-field conditions. Such magnetic-responsive organization and reorganization of the magnetic particle network significantly influences the gas absorption capacity of the nanopores inside the material. The absorption and desorption of guests in an applied magnetic field at low temperature can be regarded as a fascinating "breathing feature" of our magnetic sponge.  相似文献   

13.
Using relativistic and on-site correlation-corrected density functional theory, we have investigated the structural and magnetic properties of recently synthesized Gd3N@C80. The most stable structure of Gd3N@C80 has the three magnetic Gd ions pointing to the centers of hexagons in C80. The magnetic ground state of this structure has the three coplanar spins (S = 7/2) offset by 120 degrees angles. At the same time, the state with the highest multiplicity, where all the spins are parallel aligned, is found only about 4.5 meV higher in energy. Therefore, at room temperature, we expect Gd3N@C80 to be paramagnetic with the spin fluctuating between different multiplicities. As a result, Gd3N@C80 may exhibit greater proton relaxivity than Gd@C60 and Gd@C82 and serve as a possible candidate for the next generation of commercially available magnetic resonance imaging contrast agents.  相似文献   

14.
X-ray magnetic circular dichroism (XMCD) measurements on Yb14MnSb11 provide experimental evidence of a moment of 5 microB on Mn, with partial cancellation by an opposing moment on the Sb4 cage surrounding each Mn ion. The compound is isostructural to Ca14AlSb11, with Mn occupying the Al site in the AlSb4(9-) discrete tetrahedral, anionic unit. Bulk magnetization measurements indicate a saturation moment of 3.90 +/- 0.02 microB/formula unit consistent with four unpaired spins and implying a Mn3+, high-spin d4 state. XMCD measurements reveal that there is strong dichroism in the Mn L23 edge, the Sb M45 edge shows a weak dichroism indicating antialignment to the Mn, and the Yb N45 edge shows no dichroism. Comparisons of the Mn spectra with theoretical models for Mn2+ show excellent agreement. The bulk magnetization can be understood as Mn with a moment of 5 microB and a 2+ configuration, with cancellation of one spin by an antialigned moment from the Sb 5p band of the Sb4 cage surrounding the Mn.  相似文献   

15.
16.
A proline–thiourea host–guest complex has been described as a good catalyst for asymmetric reactions such as aldol and Mannich reactions. High stereoselectivities were obtained under optimal conditions. Thiourea was observed to have an important effect on the reactivity and selectivity, even in an unconventional nonpolar reaction medium and without the need to utilize low temperatures. This proline–thiourea host–guest system has the ability to participate in a hydrogen bonding network.  相似文献   

17.
《Comptes Rendus Chimie》2017,20(7):758-764
It has been previously indicated that pristine graphene cannot detect NO2 gas. Nanographene is a segment of graphene whose end atoms are saturated with hydrogen atoms and its properties are different from those of graphene. Herein, we investigated the reactivity, electronic sensitivity, and structural properties of hexa-peri-hexabenzocoronene (HBC) nanographene toward NO2 gas using density functional theory calculations. It was found that the central and peripheral rings of HBC are aromatic but the middle rings are non-aromatic, following Clar's sextet rule of aromaticity. The NO2 molecule prefers to be adsorbed on the central ring with a nitro configuration, releasing an energy of about 13.2 kJ/mol. The NO2 molecule significantly stabilizes the LUMO level of the HBC, thereby reducing the HOMO–LUMO energy gap from 3.60 to 1.35 eV. This indicates that the HBC is converted from a semiconductor to a semimetal. It was shown that the adsorption of NO2 gas by HBC can produce an electrical signal selectively in the presence of O2, H2, N2, CO2, and H2O gases. A short recovery time about 1.9 ns is predicted and the effect of density functional is investigated.  相似文献   

18.
The stability of an inclusion complex of quinuclidine with alpha-cyclodextrin in solution was investigated by NMR measurements of the translational diffusion coefficient. A 1:1 stoichiometry model yielded an association constant of 35 +/- 3 M(-1). The guest molecules exchange rapidly between the host cavity and the bulk solution. The reorientational dynamics of the guest and host molecules was studied using carbon-13 NMR relaxation at two magnetic fields. The relaxation of the host nuclei showed very little dependence on the guest-host concentration ratio, while the 13C spins in quinuclidine were sensitive to the solution composition. Using mole-fraction data, it was possible to extract the relaxation parameters for the bound and free form of quinuclidine. Relaxation rates of the guest molecule, free in solution, were best described by an axially symmetric model, while the data of the complex species were analyzed using the Lipari-Szabo method. Applying the axially symmetric model to the complexed quinuclidine indicated that the anisotropy of its reorientation in the bound form was increased.  相似文献   

19.
A new family of distorted ribbon-shaped nanographenes was designed, synthesized, and their optical and electrochemical properties were evaluated, pointing out an unprecedented correlation between their structural characteristics and the two-photon absorption (TPA) responses and electrochemical band gaps. Three nanographene ribbons have been prepared: a seven-membered-ring-containing nanographene presenting a tropone moiety at the edge, its full-carbon analogue, and a purely hexagonal one. We have found that the TPA cross-sections and the electrochemical band gaps of the seven-membered-ring-containing compounds are higher and lower, respectively, than those of the fully hexagonal polycyclic aromatic hydrocarbon (PAH). Interestingly, the inclusion of additional curvature has a positive effect in terms of non-linear optical properties of those ribbons.  相似文献   

20.
In view of the variety of low-temperature magnetic properties reported recently for kagome lattices with transition-metal ions in different oxidation states, we have investigated the low-energy spectrum and low-temperature thermodynamic properties of antiferromagnetic kagome lattices with varying magnitudes of site spins, employing quantum many-body Heisenberg models. The ground state and the low-lying excitation spectrum are found to depend strongly on the nature of the spin magnitude of the magnetic ions. The system remains highly frustrated if spins are half-odd-integer in magnitude, while the frustration is very weak or almost absent for integer spins or mixed-spin systems. In fact, for a mixed-spin kagome system with a certain magnitude, the whole system behaves as a classical magnet with a ferrimagnetic ground state without any frustration. These theoretical findings are consistent with a few experimental observations recently reported in the literature and would be of value in designing new kagome systems with unusual and interesting low-temperature magnetic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号