首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We demonstrate temporally shaped pulses in the deep ultraviolet spectral range (270 nm) with energies up to 37 μJ using an efficient prism stretcher and an acousto-optic programmable dispersive filter (AOPDF) applied directly in the UV. The scheme allows for arbitrary phase and amplitude shaping of picosecond UV pulses at high energy in a simple and efficient way.  相似文献   

2.
We experimentally demonstrate a method to generate shaped femtosecond laser pulses in the ultraviolet at a central wavelength of 267 nm, the third harmonic of conventional titanium-sapphire femtosecond laser systems. Employing a 128-pixel liquid-crystal spatial light modulator, we impose variable spectral phase modulations upon the near-infrared laser pulses. By this, complex laser pulses can be shaped whose overall spectrum is still conserved. Our experiments show that it is possible to easily transfer these pulses into the ultraviolet at 267 nm via sum-frequency mixing in nonlinear crystals and to predictably generate multistructured ultraviolet femtosecond laser pulses. We analyze the temporal and spectral composition of these pulses after frequency conversion into the ultraviolet using difference-frequency cross-correlation and XFROG (cross-correlation frequency-resolved optical gating) techniques with an unmodulated fundamental laser pulse. The method can be employed to facilitate adaptive quantum control experiments in the ultraviolet wavelength regime, where the major absorption bands of many organic molecular systems are located. PACS 42.65.Re; 42.72.Bj; 32.80.Qk  相似文献   

3.
We experimentally demonstrate the generation and characterization of polarization-shaped femtosecond laser pulses in the ultraviolet at a central wavelength of 400 nm. Near-infrared laser pulses are first polarization shaped and then frequency doubled in an interferometrically stable setup that employs two perpendicularly oriented nonlinear crystals. A new pulse shaper design involving volume phase holographic gratings reduces losses and hence leads to an increase in pulse energy.  相似文献   

4.
5.
High-resolution indirect pulse shaping by parametric transfer   总被引:1,自引:0,他引:1  
The phase and amplitude profile of a shaped pulse in the visible is transferred to a pulse in the near-infrared via an optical parametric amplification (OPA) process. Complex shaped pulses, such as multiple-pulse trains and pulses with high-order phase chirp, are produced at 1.2mum . Theoretical conditions necessary for high-fidelity parametric shape transfer are discussed. Similar schemes can be implemented for other OPA systems pumped at near-infrared wavelengths to generate high-resolution shaped pulses in the mid-infrared.  相似文献   

6.
报道一种全固化、全光纤的用于高功率激光驱动的惯性约束聚变驱动器的光脉冲产生系统,采用单纵模振荡器输出连续激光信号,经过相位调制器和振幅调制器,得到一个时间波形上已整形且具有一定带宽(约0.1 nm)的激光脉冲,经光纤放大器放大并经光纤分束器分束后同时输出四路激光脉冲,各路激光脉冲先通过时间同步调整单元精确控制时间同步关系后,经可编程光纤衰减器调节各路之间的功率平衡后再通过光纤放大器做进一步放大并通过150 m光纤传输输出至预放系统.该光纤系统可输出0.3—20 ns、带宽0.1 nm、能量数纳焦的几乎任意 关键词: 激光聚变驱动器 前端 光纤激光系统  相似文献   

7.
This work demonstrates a simple method for ultraviolet (UV) acousto-optical pulse shaping of both spectral amplitude and phase. A fused-silica acousto-optical modulator is used to ensure high transmission and a high damage threshold at 400-nm center wavelength. The technique eliminates complications associated with the parametric transfer of the spectral phase of near-infrared pulses through a nonlinear process out to UV wavelengths, by separating the frequency doubling and shaping processes. Three illustrative applications of phase control are presented: the compensation of material dispersion, the generation of multiple pulse trains, and the generation of arbitrarily shaped pulse trains. Self-diffraction frequency-resolved optical gating is used to characterize the success of the technique.  相似文献   

8.
We experimentally demonstrate amplitude and phase shaping of femtosecond mid-infrared pulses in a range centered about 14 mum . Single pulses with a tailored optical phase and phase-locked double pulses are generated by phase-matched difference-frequency mixing in a GaSe crystal of near-infrared pulses shaped with a liquid-crystal modulator. The electric field transients are directly measured by free-space electro-optic sampling, yielding pulse durations of 200-300 fs. Our data are in good agreement with a model that describes phase-matched optical rectification.  相似文献   

9.
We report on optimal control of the photoisomerization of 3,3-diethyl-2,2-thiacyanine iodide dissolved in methanol. Enhancement and reduction of the relative yield of cis to trans isomers are achieved; i.e., the quantum efficiency of the photoisomerization is controlled with optimally phase and amplitude shaped 400 nm femtosecond laser pulses. Single-parameter control schemes, like chirp or intensity variation, fail to change the ratio of the photoproducts. The successful modification of the molecular structure can be regarded as a first step towards controlled stereoselectivity in photochemistry.  相似文献   

10.
Femtosecond extreme ultraviolet (XUV) pulses were fully characterized for the first time by using a newly developed cross-correlation frequency-resolved optical gating (FROG) technique in the XUV region. This method utilizes laser-assisted two-photon ionization as a nonlinear optical process. Near-infrared pulses characterized by FROG were used as a reference. The amplitude and phase of XUV pulses with a pulse duration of 10 fs were found to be in good agreement with a model analysis, taking into account phase modulation by ionization, self-phase modulation, and the atomic dipole phase.  相似文献   

11.
Ultraviolet pulses with a duration of 7 fs are efficiently generated by frequency doubling the output of a noncollinear optical parametric amplifier. The ultraviolet pulses are tunable between 275 to 335 nm. The acceptance bandwidth of the doubling crystal is increased by a factor of 80 through high-order achromatic phase matching. The chirp of the visible pulses and the dispersion introduced along the beam path are compensated partially before and partially after the doubling crystal. For the design of the dispersion management, we investigate the second harmonic generation of pulses with mixed orders of chirp and explicitly discuss the transfer of the spectral phase in frequency doubling. A simple analytic theory is derived that correctly describes frequently observed spectral narrowing effects. We find that chirped SHG avoids spectral narrowing and allows for precompression of dispersion encountered in the ultraviolet beam path. We apply chirped SHG to generate 18.7 fs ultraviolet pulses in an extremely simple setup. PACS 42.65.Re; 42.65.Ky; 42.65.Yj  相似文献   

12.
A very compact and innovative pulse shaper is proposed and demonstrated. The standard architecture for pulse shaping that is composed of diffraction gratings associated with an amplitude-phase spatial light modulator (SLM) is replaced by a single phase-only SLM. It acts as a pulse stretcher and as an amplitude and phase modulator at the same time. Preliminary experiments demonstrate the accurate control of amplitude and phase of shaped pulses.  相似文献   

13.
Femtosecond pulses can be shaped in the time domain by diffraction from dynamic holograms in a photorefractive multiple quantum well placed inside a Fourier pulse shaper. We present several examples of shaped pulses obtained by controlling the amplitude or the phase of the hologram writing beams, which modifies the complex spectrum of the femtosecond output.  相似文献   

14.
Tuneable, shaped, ultraviolet (UV) femtosecond laser pulses are produced by shaping and frequency doubling the output of a commercial optical parametric amplifier (OPA). A reflective mode, folded, pulse shaping assembly employing a spatial light modulator (SLM) shapes femtosecond pulses in the visible region of the spectrum. The shaped visible light pulses are frequency doubled to generate phase- and amplitude-shaped, ultrashort light pulses in the deep ultraviolet. This approach benefits from a simple experimental setup and the potential for tuning the central frequency of the shaped ultraviolet waveform. A number of pulse shapes have been synthesised and characterised using cross-correlation frequency resolved optical gating (XFROG). This pulse shaping method can be employed for coherent control experiments in the ultraviolet region of the spectrum where many organic molecules have strong absorption bands. D.S.N. Parker and A.D.G. Nunn contributed equally to this work.  相似文献   

15.
Tan HS  Warren WS  Schreiber E 《Optics letters》2001,26(22):1812-1814
We report the generation and amplification of ultrashort shaped pulses in the visible by a two-stage noncollinear optical parametric amplification process. Phase and amplitude profiles of the shaped pulses are conserved in our amplification scheme. The energy losses normally associated with the production of complex shaped pulses are eliminated.  相似文献   

16.
Pulse shaping directly in the mid-IR is accomplished by using a germanium acousto-optic modulator (Ge AOM) capable of programmable phase and amplitude modulation for IR light between 2 and 18 microm. Shaped waveforms centered at 4.9 microm are demonstrated in both the frequency and the time domains. With a 50% throughput efficiency, the Ge AOM can generate much more intense pulses with higher resolution than can indirect shaping methods. Furthermore, the phase stability of the shaped pulse proved sufficient for cross correlation with unshaped mid-IR pulses. Thus, phase- and amplitude-tailored pulses can now be readily incorporated into phase-sensitive experiments, such as heterodyned 2D IR spectroscopy.  相似文献   

17.
We show that isolated subfemtosecond, extreme ultraviolet (XUV) pulses can be generated via harmonic generation in argon by few-cycle infrared pulses formed through filamentation-induced self-compression in neon. Our calculations show that the time structure of the XUV pulses depends sensitively on both the amplitude and the phase modulation that are induced in the driving pulse during the self-compression process.  相似文献   

18.
We demonstrate a novel spectral-shearing interferometry setup for characterizing the temporal amplitude and phase of ultrashort optical pulses over an extremely wide wavelength region. By the mixing of two strongly chirped auxiliary pulses with the pulse to be characterized, two spectrally sheared replicas are generated, and their spectral interference is evaluated. We fully characterize 10-fs pulses in the visible region by sum-frequency mixing and 19-fs pulses in the ultraviolet region by difference-frequency mixing. The scheme is self-referencing and highly sensitive. The zero-additional-phase scheme does not alter the unknown pulses and yields the pulse shape at the interaction point of a spectroscopic experiment.  相似文献   

19.
We have examined a technique of complex shaping of mid-infrared femtosecond laser pulses towards accurate and precise control of rovibrational wave packets of molecules in the ground electronic state. A Germanium acousto-optics modulator was used as a device for the pulse shaping. In order to characterize the shaped pulses precisely, sum-frequency cross-correlation frequency-resolved optical gating was introduced for the analysis of both amplitude and phase of the electric fields. The mid-infrared pulses were shaped and characterized with a frequency resolution better than 4.5 cm−1. Such a resolution is supposed to be sufficient for the realization of quantum gate operations with high fidelity, which is one of the most challenging applications of rovibrational wave packet manipulation of molecules. In order to demonstrate the precision of our method of shaping and its characterization, we have generated shaped pulses that will realize Hadamard and NOT quantum gates with rovibrational states of a CO molecule.  相似文献   

20.
We illustrate observation and characterization of medium- and low-intensity shaped ultrashort pulses at lambda=1.55mum through single-shot geometry (multishot-average) second-harmonic generation-frequency-resolved optical gating. The pulses are shaped by amplitude filters in the Fourier plane of a compact folded shaper. Sensitivity to pulses with energies of less than 20 pJ and high dynamic range is reported for this configuration. Application of this method to the propagation of ~170-fs pulses through a 50-m fiber link is also illustrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号