首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the palladium-catalyzed cyclization of allenic allylic esters using Pd(dba)2 as catalyst, it was shown that the allene acts as a carbon nucleophile. Intermediates were isolated and stereochemical studies established that the double bond of the allene has attacked the (pi-allyl)palladium intermediate on the face opposite to that of palladium.  相似文献   

2.
Described herein is the Pd(0)-catalyzed coupling cyclization reaction of 1,2-allenyl ketones with organic halides leading efficiently and conveniently to not only 2,3,4- and 2,3,5-trisubstituted furans but also 2,3,4,5-tetrasubstituted furans. Furthermore, this method showed high substituent-loading capability and tolerance of various substituents. The reactions of 1,2-allenyl ketones 1 e, 1 p, 1 q, and deuterated [D]1 c were performed for a mechanistic study, which demonstrated that instead of an enolization pathway, the reaction may proceed via the intermediacy of dienolate palladium and intramolecular nucleophilic attack on the pi-allyl palladium intermediate by the carbonyl oxygen.  相似文献   

3.
Reaction of allene-substituted cyclohexa- and cyclohepta-1,3-dienes with [PdCl(2)(PhCN)(2)] gave eta(3)-(1,2,3)-cyclohexenyl- and eta(3)-(1,2,3)-cycloheptenylpalladium complexes, respectively, in which C-C bond formation between the allene and the 1,3-diene has occurred. Analysis of the (pi-allyl)palladium complexes by NMR spectroscopy, using reporter ligands, shows that the C-C bond formation has occurred by a trans carbopalladation involving nucleophilic attack by the middle carbon atom of the allene on a (pi-diene)palladium(II) complex. The stereochemistry of the (pi-allyl)palladium complexes was confirmed by benzoquinone-induced stereoselective transformations to allylic acetates.  相似文献   

4.
Described is an asymmetric synthesis of cyclic and acyclic allylic S-aryl and S-alkyl sulfones through a highly selective palladium(0)-catalyzed 1,3-rearrangement of racemic allylic sulfinates. Treatment of racemic cyclic and acyclic allylic S-tolyl- and S-tert-butylsulfinates with Pd(2)(dba)(3).CHCl(3) as precatalyst and N,N'-(1R,2R)-1,2-cyclohexanediylbis[2-(diphenylphosphino)benzamide] as ligand for the palladium atom afforded the corresponding isomeric allylic S-tolyl and S-tert-butyl sulfones of 93-99% ee in 82-96% yield. The rearrangement of the allylic sulfinates most likely proceeds in an intermolecular fashion via formation of a cationic pi-allylpalladium complex and the sulfinate ion. The racemic allylic sulfinates were obtained from the corresponding racemic alcohols and racemic tolylsulfinyl chloride and racemic tert-butylsulfinyl chloride, respectively, in high yields. Rearrangement of the racemic tert-butylsulfinic acid 2-cyclooct-1-enyl ester with Pd(2)(dba)(3).CHCl(3) and the bisphosphane was accompanied by a highly selective kinetic resolution of the substrate and gave at 50% conversion the (R)-configured sulfinate as mixture of the S(S) and R(S) diastereomers of 92% ee and 85% ee and the (S)-configured 3-tert-butylsulfonyl cyclooctene sulfone 15a with 98% ee in almost quantitative yields.  相似文献   

5.
A novel palladium(0)-catalyzed cycloisomerization of enallenes has been developed. This reaction, catalyzed by [Pd(dba)2] (dba=dibenzylideneacetone) in acetic acid, results in the formation of cyclopentene derivatives and [n.3.0]bicyclic systems (n=3, 4) in good to high yields. The carbon-carbon bond-forming step is highly stereoselective to give cis-fused bicyclic systems. The presence of acetic acid as solvent and dba as ligand for palladium(0) turned out to be essential for the reaction in order to provide good reactivity and regioselectivity.  相似文献   

6.
The palladium-catalyzed coupling-cyclization of alpha- or beta-amino allenes with allylic halides leading to 3-allylic 2,5-dihydropyrroles and 1,2,3,6-tetrahydropyridines, respectively, was studied. The starting materials are easily available. The skeletons of both two classes of products were established by the X-ray diffraction studies of 7i and 9b. Through the study of the reaction of 2b with 3-chloro-1-butene, 1-chloro-2-butene, and pi-allyl palladium species and the stereochemical outcome of the coupling cyclization of (S)-2m and (R)-2n, it is believed that the current transformation most likely proceeded via a Pd(II)-catalyzed pathway, although a Pd(0) pathway cannot be completely excluded.  相似文献   

7.
Palladium (0)-catalyzed allylic substitution reactions employing triorganoindium reagents have been investigated. In situ generated vinyl- and arylindiums react with substituted and unsubstituted cyclohex-2-enyl esters in the presence of 1-3 mol % Pd(2)(dba)(3) to produce vinyl- or arylcyclohexenes in moderate to excellent yields. The stereoselectivity of this process was also examined, and evidence is presented that the reaction proceeds with inversion of stereochemical configuration.  相似文献   

8.
Palladium(0)-catalyzed deconjugative allylation of alkenylidenemalonates and alkylidenemalonates was achieved for the first time. Reactions of dimethyl 2-((E)-but-2-enylidene)malonate with various allylic acetates using LHMDS as a base in DMF in the presence of Pd(2)dba(3) (2.5 mol %) and PPh(3) (10 mol %) proceeded at room temperature to give the corresponding alpha-allylation products in good yields in a regio- and stereoselective manner. This reaction can also be used for allylation of dimethyl ethylidenemalonate or dimethyl 2-((E)-pent-2-enylidene)malonate and give the desired alpha-allylation products in good yields.  相似文献   

9.
The reaction of the activated olefins 1 with the allylic carbonate 2, having a hydroxy group at the terminus of the carbon chain, in the presence of catalytic amounts of Pd(2)dba(3).CHCl(3) and dppe in THF at room temperature gave the corresponding cycloaddition products, tetrahydrofuran derivatives 5, in good to very high yields. The diastereoselectivities (trans/cis ratios) of the products were in the range of ca. 60-70/40-30. The reaction of 1 with the hydroxy allylic carbonate 3 in the presence of catalytic amounts of Pd(2)dba(3).CHCl(3) and (o-tolyl)(3)P in THF at 50 degrees C afforded the corresponding cycloaddition products, tetrahydropyran derivatives 6, in good to high yields. The trans/cis ratios of the products were in the range of ca. 0-40/99-80. The reaction of 1a with the hydroxy allylic carbonate 4 needed higher reaction temperatures (approximately 100 degrees C) to give the cycloaddition product, the oxepane 7a, in 31% yield with low diastereoselectivity. Next, catalytic asymmetric syntheses of tetrahydrofuran and -pyran derivatives were carried out. With the Trost ligand 15, good to high ees were accomplished in the cycloaddition, although the diastereoselectivities were of low level. With the Hayashi ligand 16, good to high ees were also achieved in the cycloaddition. The absolute stereochemistries of the major enantiomers of 5l, 5m, and 6d were determined unambiguously by X-ray crystallographic analysis: trans-(2R,4R)-5l, cis-(2S,4R)-5l, 4R-5m, trans-(2S,4S)-6d, and cis-(2R,4S)-6d were major enantiomers. Based upon the absolute stereochemistries of the major enantiomers, the mechanism of catalytic asymmetric induction in the cycloaddition reaction is discussed.  相似文献   

10.
[reaction: see text] The viability of oximes as nucleophiles in transition-metal-catalyzed allylic substitution was examined. The oxygen atom of oxime acted as a reactive nucleophile in the reaction of a pi-allyl palladium complex. In the presence of Pd(PPh3)4, the allylic substitution of oximes with allylic carbonate afforded the linear O-allylated oxime ethers selectively without a base. In contrast, the palladium-catalyzed reaction with allylic acetate proceeded smoothly in the presence of K2CO3 or Et2Zn as a base. Selective formation of nitrones was achieved by using palladium(II) catalyst. In the presence of Pd(cod)Cl2, the allylic substitution of oximes with allylic acetate afforded the N-allylated nitrones under solvent-free conditions, as a result of the reaction with the nitrogen atom of oximes.  相似文献   

11.
The mu-eta(3)-allenyl/propargyldipalladium complexes were synthesized by the reaction of the corresponding eta(1)-allenyl- or eta(1)-propargylpalladium complexes with Pd(2)(dba)(3). The X-ray diffraction analysis indicates that the dinuclear complex has a unique structure, in which two palladium, three carbon, two phosphorus, and one halogen atoms are in the same plane. These dinuclear complexes react with electrophiles, such as HCl or AcCl, at the central carbon of the mu-eta(3)-allenyl/propargyl ligand to give the mu-eta(3)-vinylcarbenedipalladium complexes. Intramolecular reaction proceeded smoothly to give cyclization products quantitatively. Addition of a catalytic amount of a palladium(0) complex dramatically accelerated the carbon-carbon bond formation. The MO calculations on the mu-eta(3)-allenyl/propargyl complexes indicated that the reaction proceeds via orbital control.  相似文献   

12.
The reactivity of a series of N,N-dimethyl-2-iodoanilines bearing different chelating "arms" at the 3-position with Pd(2)(dba)(3) has been explored. 3-[(Diphenylphosphino)methyl]-2-iodo-N,N-dimethylaniline reacted with Pd(2)(dba)(3) and PPh(3) under aerobic conditions to give the OCP-pincer complex , which was formed by sequential C(sp(3))-H activation/oxidation at the alpha-position of the aniline N atom. On the other hand, under similar reaction conditions, 3-[2-(dimethylamino)ethyl]-2-iodo-N,N-dimethylaniline afforded the CCN-pincer complex , after a second C-H activation process at the formyl group of the initially formed OCN-pincer complex. In contrast, 2-iodo-3-(1H-1,2,4-triazol-1-ylmethyl)-N,N-dimethylaniline and 2-iodo-3-(pyrazol-1-ylmethyl)-N,N-dimethylaniline reacted with Pd(2)(dba)(3) and PPh(3), respectively, to give the 6-membered azapalladacycles and , in which the aniline nitrogen is merely a spectator substituent. Finally, treatment of iodide complex with Tl(TfO) afforded the CN-bidentate cationic complex. Solid-state structures of palladium complexes, and CH(2)Cl(2).3CH(3)OH.5H(2)O were determined by X-ray analysis.  相似文献   

13.
Gao GY  Chen Y  Zhang XP 《Organic letters》2004,6(11):1837-1840
A series of meso-amidoporphyrins were facilely synthesized by direct reactions of meso-brominated porphyrins with amides via palladium-catalyzed amidation reaction. Using a combination of palladium precursor Pd(OAc)(2) or Pd(2)(dba)(3) and phosphine ligand Xantphos, both 5-bromo-10,20-diphenylporphyrin and 5,15-dibromo-10,20-diphenylporphyrin, as well as their zinc complexes, can be effectively coupled with a wide variety of amides to give the corresponding mono- and bis-substituted meso-amidoporphyrins in high yields under mild conditions. [reaction: see text]  相似文献   

14.
Hanzawa Y  Yabe M  Oka Y  Taguchi T 《Organic letters》2002,4(23):4061-4064
The acylzirconocene chloride complex as an acyl group donor reacts with omega-unsaturated alpha,beta-enones and -ynones under Pd-Me(2)Zn(Me(2)AlCl)-catalyzed conditions to give stereoselectively bicyclo[3.3.0] compounds through (i) formation of a Pd(II) intermediate by an oxidative addition of the Pd(0) catalyst to an enone function, (ii) cyclization of the Pd intermediate to an omega-unsaturated group, (iii) an acyl group transfer from zirconium to Pd metal, (iv) reductive elimination of the Pd metal, and (v) intramolecular cis-selective aldol reaction. [reaction: see text]  相似文献   

15.
We have realized a cyclization reaction of 2,3-allenoic acids 1 in the presence of simple alkyl- or aryl-substituted allenes 3. In this reaction, the cyclic oxypalladation of 2,3-allenoic acid with Pd(II) would afford the furanonyl palladium intermediate 2, which could be trapped by the simple allene to afford a pi-allylic intermediate anti-9. This intermediate anti-9 could be nucleophilically attacked by Br- to yield 4-(1'-bromoalk-2'(Z)-en-2'-yl)furan-2(5H)-one derivatives Z-5 and Pd(0). The in-situ formed Pd(0) was efficiently converted to the catalytically active Pd(II) species by benzoquinone in HOAc. The functional groups, such as malonate, acetoxyl, and phthalic amide in allene 3, are tolerable under the current conditions. High efficiency of chirality transfer was observed when optically active 2,3-allenoic acids were used, which reveals that the formation of the intermediates 2 was a highly stereoselective anti-oxypalladation process. The highly selective formation of Z-isomer may be explained by face-selective coordination of allene 3 with the palladium atom in intermediate 2: the palladium atom coordinates to the terminal C=C double bond of allene 3 from the face opposite to the substituent group to avoid the steric congestion. The products Z-5 could be further elaborated via the S(N)2 nucleophilic substitution with amine or sodium benzenesulfinate, the reduction of the C-Br bond by NaBH(4), and the CuBr.SMe(2)-catalyzed S(N)2'-substitution with CH(3)MgBr.  相似文献   

16.
A method of palladium-catalyzed asymmetric allylic substitution for synthesizing 2-substituted cyclohexenylamine derivatives was established. Treatment of a 2-silyloxymethylcyclohexenol derivative with ortho-bromo-N-tosylaniline in the presence of Pd(2)dba(3).CHCl(3) and (S)-BINAPO in THF afforded a cyclohexenylamine derivative with 84% ee in 80% yield. The Heck reaction was carried out to produce an indolenine derivative in good yield. Using this method, we synthesized indolenine derivative 7, which was recrystallized from EtOH to give an optically pure compound. From this compound, tetracyclic ketone 13, which should be a useful intermediate for the synthesis of indole alkaloids, could be synthesized. The total syntheses of (-)-dehydrotubifoline, (-)-tubifoline, and (-)-strychnine were achieved from 13. All ring constructions for the syntheses of these natural products were achieved using a palladium catalyst.  相似文献   

17.
The synthesis of N-protected allylic amines has been achieved utilizing a palladium(II)-catalyzed, [3,3]-rearrangement of (allyloxy) iminodiazaphospholidines. This [3,3]-aza-phospha-oxa-Cope sigmatropic rearrangement reaction is thermodynamically driven by a P=N to P=O interconversion and is an alternative to the Overman rearrangement. The overall process involves the nucleophilic displacement of an allylic alcohol onto a P(III) precursor, followed by a Staudinger reaction to generate the (allyloxy) iminodiazaphospholidine precursors. Pd(II)-catalyzed [3,3]-aza-phospha-oxa-Cope rearrangement then gives a phosphoramide, which is readily hydrolyzed under acidic conditions to yield allylic amine derivatives. Pd(II) catalysis is believed to occur in a fashion analogous to that of the rearrangement of allylic imidates. The scope of racemic, diastereoselective, and enantioselective variants of this rearrangement is described. The use of chiral diamine auxiliaries in diastereoselective rearrangements is reported. Rearrangement of chiral N,N'-dimethyl cyclohexanediamine derived diazaphospholidines gives rise to phosphoramides with moderate diastereoselectivities (up to 3.5:1 dr). The same major diastereomeric product in these rearrangements was prepared irrespective of the starting allylic alcohol geometry. An enantioselective variant of the reaction was demonstrated for the rearrangement of cis-(allyloxy) iminodiazaphospholidines with cobalt oxazoline palladacycle (COP-X) catalysts (5 mol %) in high yield and enantioselectivity (up to 96% ee).  相似文献   

18.
The major complex formed in solution from [[Pd0(dba)2]+1P-N] mixtures is [Pd0(dba)(P-N)] (dba=trans,trans-dibenzylideneacetone; P-N=PhPN, 1-dimethylamino-2-diphenylphosphinobenzene; FcPN, N,N-dimethyl-1-[2-(diphenylphosphino)ferrocenyl]methylamine; OxaPN, 4,4'-dimethyl-2-(2-diphenylphosphinophenyl)-1,3-oxazoline). Each complex consists of a mixture of isomers involved in equilibria: two 16-electron rotamer complexes [Pd0(eta2-dba)(eta2-P-N)] and one 14-electron complex [Pd0(eta2-dba)(eta1-P-N)] observed for FcPN and OxaPN. [Pd0(dba)(PhPN)] and [SPd0(PhPN)] (S solvent) react with PhI in an oxidative addition: [SPd0(PhPN)] is intrinsically more reactive than [Pd0(dba)(PhPN)]. This behavior is similar to that of the bidentate bis-phosphane ligands. When the PhPN ligand is present in excess, it behaves as a monodentate phosphane ligand, since [Pd0(eta2-dba)(eta1-PhPN)2] is formed first by preferential cleavage of the Pd-N bond instead of the Pd olefin bond. [Pd0(eta1-PhPN)3] is also eventually formed. [Pd0(dba)(FcPN)] and [Pd0(dba)(OxaPN)] are formed whatever the excess of ligand used. [SPd0(FcPN)] and [SPd0)(OxaPN)] are not involved in the oxidative addition. The 16-electron complexes [Pd0(eta2-dba)(eta2-FcPN)] and [Pd0(eta2-dba)(eta2-OxaPN)] are found to react with PhI via a 14-electron complex as has been established for [Pd0(eta2-dba)(eta1-OxaPN)]. Once again, the cleavage of the Pd-N bond is favored over that of Pd-olefin bond. This work demonstrates the higher affinity for [Pd0(P-N)] of dba compared with the P-N ligand, and emphasizes once more the important role of dba, which either controls the concentration of the most reactive complex, [SPd0(PhPN)], or is present in the reactive complexes, [Pd0(dba)(FcPN)] or [Pd0(dba)(OxaPN)], and thus contributes to their intrinsic reactivity.  相似文献   

19.
Gao GY  Colvin AJ  Chen Y  Zhang XP 《Organic letters》2003,5(18):3261-3264
[reaction: see text] meso-Aryloxy- and alkoxy-substituted porphyrins were conveniently synthesized by direct reactions of meso-halogenated porphyrins with alcohols via palladium-catalyzed C-O cross-coupling reactions. Using a combination of palladium precursor Pd(OAc)(2) or Pd(2)(dba)(3) and phosphine ligand DPEphos or Xantphos allowed both 5-bromo-10,20-diarylporphyrin and 5,15-dibromo-10,20-diarylporphyrin, as well as their zinc complexes, to be effectively coupled with a variety of alcohols to give the corresponding mono- and bis-substituted meso-aryloxy/alkoxyporphyrins in moderate to high yields under mild conditions.  相似文献   

20.
The oxidative addition of the allylic acetate, CH2=CH-CH2-OAc, to the palladium(o) complex [Pd0(P,P)], generated from the reaction of [Pd(dba)2, with one equivalent of P,P (P,P = dppb = 1,4-bis(diphenylphosphanyl)butane, and P,P = dppf = 1,1'-bis(diphenylphosphanyl)ferrocene), gives a cationic (eta3-allyl)palladium(II) complex, [(eta3-C3H5)Pd(P,P)+]. with AcO as the counter anion. This reaction is reversible and proceeds through two successive equilibria. The overall equilibrium constants have been determined in DMF. Compared with PPh3, the overall equilibrium lies more in favor of the cationic (eta3-allyl)palladium(II) complex when bidentate P,P ligands are considered in the order: dppb > dppf > PPh3. The reaction proceeds via a neutral intermediate complex [(eta2-CH=CH-CHCH2-OAc)Pd0(P,P)], which has been kinetically detected. The rate constants of the successive steps have been determined in DMF by UV spectroscopy and conductivity measurements. The overall complexation step of the Pd0 by the allylic acetate C=C bond is faster than the oxidative addition/ionization step which gives the cationic (eta3-allyl)palladium(II) complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号