首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper presents a method of sensitivity analysis on the cost coefficients and the right-hand sides for most variants of the primal–dual interior point method. We first define an ε-optimal solution to describe the characteristics of the final solution obtained by the primal–dual interior point method. Then an ε-sensitivity analysis is defined to determine the characteristic region where the final solution remains the ε-optimal solution as a cost coefficient or a right-hand side changes. To develop the method of ε-sensitivity analysis, we first derive the expressions for the final solution from data which are commonly maintained in most variants of the primal–dual interior point method. Then we extract the characteristic regions on the cost coefficients and the right-hand sides by manipulating the mathematical expressions for the final solution. Finally, we show that in the nondegenerate case, the characteristic regions obtained by ε-sensitivity analysis are convergent to those obtained by sensitivity analysis in the simplex algorithm.  相似文献   

2.
The mean value cross decomposition method for linear programming problems is a modification of ordinary cross decomposition that eliminates the need for using the Benders or Dantzig-Wolfe master problem. It is a generalization of the Brown-Robinson method for a finite matrix game and can also be considered as a generalization of the Kornai-Liptak method. It is based on the subproblem phase in cross decomposition, where we iterate between the dual subproblem and the primal subproblem. As input to the dual subproblem we use the average of a part of all dual solutions of the primal subproblem, and as input to the primal subproblem we use the average of a part of all primal solutions of the dual subproblem. In this paper we give a new proof of convergence for this procedure. Previously convergence has only been shown for the application to a special separable case (which covers the Kornai-Liptak method), by showing equivalence to the Brown-Robinson method.  相似文献   

3.
An efficient and numerically stable dual algorithm for positive definite quadratic programming is described which takes advantage of the fact that the unconstrained minimum of the objective function can be used as a starting point. Its implementation utilizes the Cholesky and QR factorizations and procedures for updating them. The performance of the dual algorithm is compared against that of primal algorithms when used to solve randomly generated test problems and quadratic programs generated in the course of solving nonlinear programming problems by a successive quadratic programming code (the principal motivation for the development of the algorithm). These computational results indicate that the dual algorithm is superior to primal algorithms when a primal feasible point is not readily available. The algorithm is also compared theoretically to the modified-simplex type dual methods of Lemke and Van de Panne and Whinston and it is illustrated by a numerical example. This research was supported in part by the Army Research Office under Grant No. DAAG 29-77-G-0114 and in part by the National Science Foundation under Grant No. MCS-6006065.  相似文献   

4.
A dual perturbation view of linear programming   总被引:2,自引:0,他引:2  
Solving standard-form linear prograrns via perturbation of the primal objective function has received much attention recently. In this paper, we investigate a new perturbation scheme which obtains a dual optimal solution by perturbing the dual feasible domain under different norms. A dual-to-primal conversion formula is also provided. We show that this new perturbation scheme actually generalizes the primal entropic perturbation approach to linear programming.Partially sponsored by the North Carolina Supercomputing Center 1994 Cray Research Grant and the National Textile Center Research Grant.  相似文献   

5.
《Optimization》2012,61(5):683-690
Our paper presents a new Criss-Cross method for solving linear programming problems. Starting from a neither primal nor dual feasible solution, we reach an optimal solution in finite number of steps if it exists. If there is no optimal solution, then we show that there is not primal feasible or dual feasible solution, We prove the finiteness of this procedure. Our procedure is not the same as the primal or dual simplex method if we have a primal or dual feasible solution, so we have constructed a quite new procedure for solving linear programming problems.  相似文献   

6.
When solving nonlinear least-squares problems, it is often useful to regularize the problem using a quadratic term, a practice which is especially common in applications arising in inverse calculations. A solution method derived from a trust-region Gauss-Newton algorithm is analyzed for such applications, where, contrary to the standard algorithm, the least-squares subproblem solved at each iteration of the method is rewritten as a quadratic minimization subject to linear equality constraints. This allows the exploitation of duality properties of the associated linearized problems. This paper considers a recent conjugate-gradient-like method which performs the quadratic minimization in the dual space and produces, in exact arithmetic, the same iterates as those produced by a standard conjugate-gradients method in the primal space. This dual algorithm is computationally interesting whenever the dimension of the dual space is significantly smaller than that of the primal space, yielding gains in terms of both memory usage and computational cost. The relation between this dual space solver and PSAS (Physical-space Statistical Analysis System), another well-known dual space technique used in data assimilation problems, is explained. The use of an effective preconditioning technique is proposed and refined convergence bounds derived, which results in a practical solution method. Finally, stopping rules adequate for a trust-region solver are proposed in the dual space, providing iterates that are equivalent to those obtained with a Steihaug-Toint truncated conjugate-gradient method in the primal space.  相似文献   

7.
Ten codes or code variants were used to solve the five equivalent posynomial GP problem formulations. Four of these codes were general NLP codes; six were specialized GP codes. A total of forty-two test problems was solved with up to twenty randomly generated starting points per problem. The convex primal formulation is shown to be intrinsically easiest to solve. The general purpose GRG code called OPT appears to be the most efficient code for GP problem solution. The reputed superiority of the specialized GP codes GGP and GPKTC appears to be largely due to the fact that these codes solve the convex primal formulation. The dual approaches are only likely to be competitive for small degree of difficulty, tightly constrained problems.  相似文献   

8.
This paper presents a decomposition algorithm for solving convex programming problems with separable structure. The algorithm is obtained through application of the alternating direction method of multipliers to the dual of the convex programming problem to be solved. In particular, the algorithm reduces to the ordinary method of multipliers when the problem is regarded as nonseparable. Under the assumption that both primal and dual problems have at least one solution and the solution set of the primal problem is bounded, global convergence of the algorithm is established.  相似文献   

9.
In this paper, we consider a least square semidefinite programming problem under ellipsoidal data uncertainty. We show that the robustification of this uncertain problem can be reformulated as a semidefinite linear programming problem with an additional second-order cone constraint. We then provide an explicit quantitative sensitivity analysis on how the solution under the robustification depends on the size/shape of the ellipsoidal data uncertainty set. Next, we prove that, under suitable constraint qualifications, the reformulation has zero duality gap with its dual problem, even when the primal problem itself is infeasible. The dual problem is equivalent to minimizing a smooth objective function over the Cartesian product of second-order cones and the Euclidean space, which is easy to project onto. Thus, we propose a simple variant of the spectral projected gradient method (Birgin et al. in SIAM J. Optim. 10:1196–1211, 2000) to solve the dual problem. While it is well-known that any accumulation point of the sequence generated from the algorithm is a dual optimal solution, we show in addition that the dual objective value along the sequence generated converges to a finite value if and only if the primal problem is feasible, again under suitable constraint qualifications. This latter fact leads to a simple certificate for primal infeasibility in situations when the primal feasible set lies in a known compact set. As an application, we consider robust correlation stress testing where data uncertainty arises due to untimely recording of portfolio holdings. In our computational experiments on this particular application, our algorithm performs reasonably well on medium-sized problems for real data when finding the optimal solution (if exists) or identifying primal infeasibility, and usually outperforms the standard interior-point solver SDPT3 in terms of CPU time.  相似文献   

10.
In general if a linear program has an optimal solution, then a primal and dual optimal solution is a certificate of the solvable status. Furthermore, it is well known that in the solvable case, then the linear program always has an optimal basic solution. Similarly, when a linear program is primal or dual infeasible then by Farkas's Lemma a certificate of the infeasible status exists. However, in the primal or dual infeasible case then there is not an uniform definition of what a suitable basis certificate of the infeasible status is.In this work we present a definition of a basis certificate and develop a strongly polynomial algorithm which given a Farkas type certificate of infeasibility computes a basis certificate of infeasibility. This result is relevant for the recently developed interior-point methods because they do not compute a basis certificate of infeasibility in general. However, our result demonstrates that a basis certificate can be obtained at a moderate computational cost.  相似文献   

11.
《Optimization》2012,61(2):131-147
The problem of finding a solution to a system of mixed variational inequalities, which can be interpreted as a generalization of a primal–dual formulation of an optimization problem under arbitrary right-hand side perturbations, is considered. A number of various equilibrium type problems are particular cases of this problem. We suggest the problem to be reduced to a class of variational inequalities and propose a general descent type method to find its solution. If the primal cost function does not possess strengthened convexity properties, this descent method can be combined with a partial regularization method.  相似文献   

12.
Cross decomposition for mixed integer programming   总被引:6,自引:0,他引:6  
Many methods for solving mixed integer programming problems are based either on primal or on dual decomposition, which yield, respectively, a Benders decomposition algorithm and an implicit enumeration algorithm with bounds computed via Lagrangean relaxation. These methods exploit either the primal or the dual structure of the problem. We propose a new approach, cross decomposition, which allows exploiting simultaneously both structures. The development of the cross decomposition method captures profound relationships between primal and dual decomposition. It is shown that the more constraints can be included in the Langrangean relaxation (provided the duality gap remains zero), the fewer the Benders cuts one may expect to need. If the linear programming relaxation has no duality gap, only one Benders cut is needed to verify optimality.  相似文献   

13.
We apply a modified subgradient algorithm (MSG) for solving the dual of a nonlinear and nonconvex optimization problem. The dual scheme we consider uses the sharp augmented Lagrangian. A desirable feature of this method is primal convergence, which means that every accumulation point of a primal sequence (which is automatically generated during the process), is a primal solution. This feature is not true in general for available variants of MSG. We propose here two new variants of MSG which enjoy both primal and dual convergence, as long as the dual optimal set is nonempty. These variants have a very simple choice for the stepsizes. Moreover, we also establish primal convergence when the dual optimal set is empty. Finally, our second variant of MSG converges in a finite number of steps.  相似文献   

14.
We consider the minimization problem with strictly convex, possibly nondifferentiable, separable cost and linear constraints. The dual of this problem is an unconstrained minimization problem with differentiable cost which is well suited for solution by parallel methods based on Gauss-Seidel relaxation. We show that these methods yield the optimal primal solution and, under additional assumptions, an optimal dual solution. To do this it is necessary to extend the classical Gauss-Seidel convergence results because the dual cost may not be strictly convex, and may have unbounded level sets. Work supported by the National Science Foundation under grant NSF-ECS-3217668.  相似文献   

15.
This paper presents an integrated approach to sensitivity analysis in some linear and non-linear programming problems. Closed formulas for the sensitivities of the objective function and primal and dual variables with respect to all parameters for some classes of problems are obtained. As particular cases, the sensitivities with respect to all data values, i.e., cost coefficients, constraints coefficients and right hand side terms of the constraints are provided for these classes of problems as closed formulas. The method is illustrated by its application to several examples.   相似文献   

16.
In this paper, we study alternative primal and dual formulations of multistage stochastic convex programs (SP). The alternative dual problems which can be traced to the alternative primal representations, lead to stochastic analogs of standard deterministic constructs such as conjugate functions and Lagrangians. One of the by-products of this approach is that the development does not depend on dynamic programming (DP) type recursive arguments, and is therefore applicable to problems in which the objective function is non-separable (in the DP sense). Moreover, the treatment allows us to handle both continuous and discrete random variables with equal ease. We also investigate properties of the expected value of perfect information (EVPI) within the context of SP, and the connection between EVPI and nonanticipativity of optimal multipliers. Our study reveals that there exist optimal multipliers that are nonanticipative if, and only if, the EVPI is zero. Finally, we provide interpretations of the retroactive nature of the dual multipliers. This work was supported by NSF grant DMII-9414680.  相似文献   

17.
Curet曾提出了一种有趣的原始一对偶技术,在优化对偶问题的同时单调减少原始不可行约束的数量,当原始可行性产生时也就产生了原问题的最优解.然而该算法需要一个初始对偶可行解来启动,目标行的选择也是灵活、不确定的.根据Curet的原始一对偶算法原理,提出了两种目标行选择准则,并通过数值试验进行比较和选择.对不存在初始对偶可行解的情形,通过适当改变目标函数的系数来构造一个对偶可行解,以求得一个原始可行解,再应用原始单纯形算法求得原问题的最优解.数值试验对这种算法的计算性能进行验证,通过与经典两阶段单纯形算法比较,结果表明,提出的算法在大部分问题上具有更高的计算效率.  相似文献   

18.
考虑带次模惩罚和随机需求的设施选址问题,目的是开设设施集合的一个子集,把客户连接到开设的设施上并对没有连接的客户进行惩罚,使得开设费用、连接费用、库存费用、管理费用和惩罚费用之和达到最小. 根据该问题的特殊结构,给出原始对偶3-近似算法. 在算法的第一步,构造了一组对偶可行解;在第二步中构造了对应的一组原始整数可行解,这组原始整数可行解给出了最后开设的设施集合和被惩罚的客户集合. 最后,证明了算法在多项式时间内可以完成,并且算法所给的整数解不会超过最优解的3倍.  相似文献   

19.
The Revised Primal Simplex algorithm, in its simplest form, has no defence against degeneracy. Various forms of the perturbation method are usually effective, but most offer no guarantee of avoiding all degeneracy, and can lead to numerical difficulties. This paper presents a method that avoids cycling and circling by taking a dual approach.The degenerate subproblem consists of all the original variables, but only the degenerate transformed constraints. The current primal objective, which may be mixed, is used. This subproblem may be solved using the dual simplex algorithm, starting from the current dual infeasible solution, and with a zero dual objective. If the dual algorithm terminates optimally then the whole problem is optimal (subject to primal feasibility). Otherwise the final solution provides a non-basic direction which improves the value of the mixed primal objective and moves away from the degenerate vertex. A purification algorithm then renders the solution basic and further improves the mixed objective.  相似文献   

20.
《Optimization》2012,61(1-2):61-92
We consider finite-dimensional minimax problems for two traditional models: firstly,with box constraints at variables and,secondly,taking into account a finite number of tinear inequalities. We present finite exact primal and dual methods. These methods are adapted to a great extent to the specific structure of the cost function which is formed by a finite number of linear functions. During the iterations of the primal method we make use of the information from the dual problem, thereby increasing effectiveness. To improve the dual method we use the “long dual step” rule (the principle of ullrelaxation).The results are illustrated by numerical experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号