首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two malonato-bridged hexamethylenetetramine coordination polymers, M2(hmt)(H2O)2(mal)2 [hmt?=?hexamethylenetetramine, mal?=?malonate(2-), M?=?Mn (1), Cu (2)] were prepared and structurally characterized. The isostructural complexes are orthorhombic, space group Imm2, with a?=?7.104(1), b?=?15.982(3), c?=?7.702(1)?Å, Z?=?2, D calc?=?1.862?g?cm?3(1) and a?=?6.962(3), b?=?15.500(7), c?=?7.627(3)?Å, Z?=?2, D calc?=?2.047?g?cm?3for 2. The transition metals are octahedrally coordinated by one nitrogen atom of an hmt ligand and five oxygen atoms of a water molecule and three malonate anions. The latter coordinate in chelating/bis-monodentate mode to give 2D layers with a (4,?4) topology, and which are pillared by bridging bidentate hmt ligands to generate an open 3D framework with channels extending in the [001] direction. Over the temperature range 5–300?K, 2 behaves paramagnetically, following the Curie–Weiss law χm(T???θ)?=?4.521(6)?cm3mol?1K with a Weiss constant θ?=??4.8(2)?K.  相似文献   

2.
The reactions of Zn(NO3)2 · 6H2O and FeSO4 · 7H2O with 4-PDS (4-PDS = 4,4′-dipyridyldisulfide) and NH4SCN in CH3OH afforded the complexes [Zn(NCS)2(4-PDS)]n (1) and [Fe(NCS)2(4-PDS)2 · 4H2O]n (2), respectively, while the reaction of CoCl2 · 6H2O with 4-PDS in CH3OH gave the complex {[Co(4-PDS)2][Cl]2 · 2CH3OH}n, (3). These complexes have been characterized by spectroscopic methods and their structures determined by X-ray crystallography. The 4-PDS ligands in 1 are coordinated to the metal centers through the nitrogen atoms to form 1-D zigzag-chains, and the distorted tetrahedral coordination geometry at each zinc center is completed by a pair of N-bonded thiocyanate ligands. Compound 2 has a 1-D channel-chain structure and each octahedral Fe(II) metal center is coordinated by four 4-PDS ligands and two trans N-bonded thiocyanate ligands. Weak SS interactions in complex 1 link the 1-D chains into 2-D molecular sheets. In complex 2, the channel chains are interlinked through SS interactions to form molecular sheets, which interpenetrate through the SS interactions to form 3-D structures with large cavities that are occupied by the water molecules. Compound 3 also has a 1-D channel-chain structure with each square-planar Co(II) metal center coordinated by four 4-PDS ligands. Multiple C–HCl hydrogen bonds and SO interactions in 3 link the 1-D chains into 2-D structures.  相似文献   

3.
Abstract

Five coordination complexes with Mn2+ (1), Co2+ (2), Ni2+ (3), Cu2+ (4), and Zn2+ (5) containing acesulfame (ace) and N,N-diethylnicotinamide (dena) ligands were synthesized and structural binding properties investigated. Four compounds (1, 2, 4, and 5) were examined with single crystal X-ray diffraction methods. The structures containing Mn(II), Co(II), and Zn(II) were iso-structural. Six-coordination of metal cations were completed with two moles dena and four aqua ligands. The dena ligands were coordinated via pyridine nitrogen as neutral-monodentate. Charge stabilities of the complexes are complemented by two moles monoanionic ace ligands, located outside of the coordination unit. In the Cu(II) complex, the coordination is completed by acidic nitrogen and carbonyl oxygen atoms of two ace ligands and pyridine nitrogen of two moles dena ligands. The coordination to Cu(II) for ace ligands was monoanionic-bidentate. All metal cations in the structure are distorted octahedral. Thermal decomposition of complexes begins with removal of the aqua molecules from the structures and is completed by combustion of organic ligands. The final decomposition products of all structures have been identified as corresponding metal oxides. Some biological applications (anti-fungal/anti-bacterial) were studied using 15.  相似文献   

4.
Abstract

Five new coordination complexes [MnII (L1)2(4,4′-bpy)]n (1), [NiII (L1)2(4,4′-bpy)]n (2), [ZnII (L1)2(4,4′-bpy)]n (3), [CuII (L1)2(phen)2]Cl2 (4) and [CuII 2(L1)2(2,2′-bpy)2]Cl2 (5) (HL1?=?3,4,5-trifluorobenzeneseleninic acid, 4,4′-bpy = 4,4′-bipyridine, 2,2′-bpy = 2,2′-bipyridine and phen = 1,10-phenanthroline), have been synthesized and characterized by single-crystal X-ray diffraction, powder X-ray diffraction (PXRD), elemental analysis and IR spectroscopy. Complexes 13 display similar layers structures. In 13, the adjacent layers are further connected through π···π interactions to form three-dimensional supramolecular structures. Complexes 4 and 5 show a dimer containing an eight-membered ring. The dimer extends into three-dimensional supramolecular structures through π···π interactions, C–H···F and C–H···Cl interactions.  相似文献   

5.
New mixed-ligand complexes with empirical formulae M(4-bpy)L2·1.5H2O (M(II)=Mn, Co), Ni(4-bpy)2L2 and Cu(4-bpy) L2·H2O (where: 4-bpy=4,4'-bipyridine, L=CC L2HCOO-) have been isolated in pure state. The complexes have been characterized by elemental analysis, ir spectroscopy, conductivity (in methanol, dimethylformamide and dimethylsulfoxide solutions) and magnetic and x-ray diffraction measurements. The Mn(II) and Co(II) complexes are isostructural. The way of metal-ligand coordinations discussed. the ir spectra suggest that the carboxylate groups are bonded with metal(II) in the same way (Ni, Cu) or in different way (Mn, Co). The solubility in water is in the order of 19.40·10-3÷1.88·10-3ł mol dm-3ł. During heating the hydrate complexes lose all water in one step. The anhydrous complexes decompose to oxides via several intermediate compounds. A coupled TG-MS system was used to analyse the principal volatile products of obtained complexes. The principal volatile products of thermal decomposition of complexes in air are: H2O2 +, CO2 +, HCl+, Cl2 +, NO+ and other. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
A bidentate/tridentate 5-bromosalycilaldehyde isonicotinoylhydrazone Schiff base was synthesized by condensing 5-bromosalycilaldehyde with isonicotinoylhydrazine. Cu(II), Co(II), Ni(II), Mn(II) and Zn(II) complexes of this chelating ligand were synthesized using nitrates of these metals. The ligand and the complexes were characterized by elemental analysis, UV–Vis, IR and EPR spectroscopy, conductance and magnetic susceptibility measurements, fluorescence, cyclic voltammetry and thermogravimetric analysis. The ligand and Zn(II) complex exhibits solid-state photoluminescence at room temperature.  相似文献   

7.
Two structurally related flexible imidazolyl ligands, bis(N-imidazolyl)methane (L1) and 1,4-bis(N-imidazolyl)butane (L2), were reacted with Cu(II), Co(II) and Ni(II) salts of aliphatic/aromatic dicarboxylic acids resulting in the formation of a number of novel metal–organic coordination architectures, [CuB2(ox)2(L1)2(H2O)2] · 4H2O (1) (ox = oxalate), [Cu(pdc)(L2)1.5] · 4H2O (2, pdc = pyridine-2,6-dicarboxylate), [Co(L)2(H2O)2](tp) · 4H2O (3, tp = terephthalate), [Ni(L1)2(H2O)2](ip) · 5H2O (4, ip = isophthalate), [Cu2(L1)4(H2O)4](tp)2 · 7H2O (5), [Co(mal)(L1)(H2O)] · 0.5MeOH (6, mal = malonate), [Co(pdc)(L1)(H2O)] (7). All the complexes have been structurally characterized by X-ray diffraction analysis. The different coordination modes of the dicarboxylate anions, due to their chain length, rigidity and diimidazolyl functionality, lead to a wide range of different coordination structures. The coordination polymers exhibit 1D single chain, ladder, 2D sheet and 2D network structures. The aliphatic and aromatic dicarboxylates can adopt chelating μ2 and chelating-bridging μ3 coordination modes, or act as uncoordinated counter anions. The central metal ions are coordinated in N2O4, N4O2, N2O3 and N3O3 fashions, depending on the ancillary ligands. The topology of 1 gives rise to macrocycles which are connected through hydrogen bonds to form 1D chains, whereas compound 2 exhibits a 1D polymeric ladder in which the carboxylate acts as a pincer ligand. Compounds 35 show doubly bridged 1D chains, and the dicarboxylate groups are not coordinated but form 2D corrugated sheets with water molecules intercalated between the cationic layers. Compound 6 has a 2D network sheet structure in which each metal ion links three neighboring Co atoms by the bis(N-imidazolyl)methane ligand. The cobalt compound 7, with a 2D polymeric double sheet structure, is built from pincer carboxylate (pdc) and 1,4-bis(N-imidazolyl)methane ligands.  相似文献   

8.
The thermal stabilities of 5-chloro-2-methoxybenzoates of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) were studied in air and nitrogen atmospheres. The complexes were obtained as mono-, di-, tetra-and pentahydrates with a metal to ligand ratio of 1:2 and with colours typical for M2+ ions (Mn-slightly pink, Co-pink, Ni-green, Cu-blue and Zn-white) and as polycrystalline compounds. When heated they dehydrate to form anhydrous salts which nextare decomposed to the oxides of the respective metals in air while in nitrogen to the mixtures of metal oxides and oxychlorides and carbon. The most thermally stable in air, nitrogen and argon atmospheres is 5-chloro-2-methoxybenzoate of Cu(II) while the least thermally stable is that of Co(II). This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
2-Hydroxy salicylhydrazide isatin hydrazone (L) and its Mn (II), Co (II), Ni (II), Cu (II), and Zn (II), metal complexes were synthesized. 1H NMR, UV–Vis, IR spectroscopy and elemental (CHN/S) analysis techniques were applied for characterization. TG/DTA techniques revealed that all the synthetic compounds are thermally stable up to 300 °C. They were found non-electrolytes in nature. Furthermore, all these complexes were evaluated for antiglycation and DPPH radical scavenging activities. They showed varying degree of activity with IC50 values between 168.23 and 269.0 μM in antiglycation and 29.63–57.71 μM in DPPH radical scavenging activity. Mn (II), Co (II), Ni (II), Cu (II), and Zn (II), metal complexes showed good antiglycation as well as DPPH radical scavenging activity. The IC50 values for antiglycation activity are 168.23 ± 2.37, 234.27 ± 4.33, 257.1 ± 6.43, 267.7 ± 8.43, 269.0 ± 8.56 Ni for Co, Zn, Mn, Cu, and Ni complexes, respectively, while IC50 value were found to be 29.63 ± 2.76, 31.13 ± 1.41, 35.16 ± 2.45, 43.53 ± 3.12, 57.71 ± 2.61 μM for Cu, Zn, Mn, Co and Ni complexes, respectively, for DPPH radical scavenging activity. These synthesized metal complexes were found to be better active than standards Rutin (IC50 = 294.46 μM) for anti-glycation, and tert-butyl-4-hydroxyanisole (IC50 = 44.7 μM) for DPPH radical scavenging activity.  相似文献   

10.
The thermodynamic proton ligand and metal ligand stability constants of N-m-tolyl-p-methylbenzohydroxamic acid with Cu(II), Zn(II), Ni(II), and Mn(II) have been determined at 25° and 35° in several dioxane-water media. The pK a and logK 1 (logK 2 or log 2) varies linearly with the mole fraction of dioxane at a given temperature but not linearly with the reciprocal of dielectric constants of the medium. Values of G o, H o, and S o are tubulated. The stabilities of the complexes mostly follow the order of electron affinities of the metal ions. An attempt has been made to calculate the ligand field stabilization energy of the complexes.

Mit 2 Abbildungen  相似文献   

11.
Metal complexes composed of bidentate 1,2-bis(2-methyl-5-(4-pyridyl)-3-thienyl)perfluorocyclopentene (1a) and monodentate 1-(2-methyl-5-phenyl-3-thienyl)-2-(2-methyl-5-(4-pyridyl)-3-thienyl)perfluorocyclopentene (2a) photochromic ligands and M(hfac)(2) (M = Zn(II), Mn(II), and Cu(II)) were prepared, and their photoinduced coordination structural changes were studied. X-ray crystallographic analyses showed the formation of coordination polymers and discrete 1:2 complexes for bidentate and monodentate ligands, respectively. The complexes underwent reversible photochromic reactions by alternate irradiation with UV and visible lights in solution as well as in the single-crystalline phase. Upon photoirradiation with UV and visible light, the ESR spectra of the copper complexes of 1a reversibly changed. While the open-ring isomer gave an axial-type spectrum, the photogenerated closed-ring isomer showed a rhombic-type spectrum. This indicates that the photoisomerization induced the change in the coordination structure.  相似文献   

12.
Conditions for the preparation of Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) 4-methylphthalates were investigated and their composition, solubility in water at 295 K and magnetic moments were determined. IR spectra and powder diffraction patterns of the complexes prepared with molar ratio of metal to organic ligand of 1.0:1.0 and general formula: M [ CH3C6H3(CO2)2nH2o (n=1-3) were recorded and their decomposition in air were studied. During heating the hydrated complexes are dehydrated in one (Mn, Co, Ni, Zn, Cd) or two steps (Cu) and next the anhydrous complexes decompose to oxides directly (Cu, Zn), with intermediate formation of carbonates (Mn, Cd), oxocarbonates (Ni) or carbonate and free metal (Co). The carboxylate groups in the complexes studied are mono- and bidentate (Co, Ni), bidentate chelating and bridging (Zn) or bidentate chelating (Mn, Cu, Cd). The magnetic moments for paramagnetic complexes of Mn(II), Co(II), Ni(II) and Cu(II) attain values 5.92, 5.05, 3.36 and 1.96 M.B., respectively. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
New mixed-ligand complexes of general formulae Mn(4-bpy)(CCl3COO)2⋅H2O, Ni(4-bpy)2(CCl3COO)2⋅2H2O and Zn(4-bpy)2(CCl3COO)2⋅2H2O (where 4-bpy=4,4’-bipyridine) were obtained and characterized. The IR spectra, conductivity measurements and other physical properties of these compounds were discussed. The central atoms M(II) form coordinate bonds with title ligands. The thermal behaviour of the synthesized complexes was studied in air. During heating the complexes decompose via different intermediate products to Mn3O4, NiO and ZnO; partial volatilization of ZnCl2was observed. A coupled TG-MS system was used to the analysis of the principal volatile thermal decomposition products of Mn(II) and Ni(II) complexes. The principal volatile mass fragments correspond to: H2O+, OH+, CO+ 2, HCl+, Cl+ 2, CCl+ and other. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
Infrared (IR), nuclear magnetic resonance (NMR), thermogravimetric analysis (TG), derivative thermogravimetric analysis (DTG), differential thermal analysis (DTA) and molar conductivity studies have been carried out on the chelates of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) with 3-methyl- and 3-phenyl-4-nitroso-5-pyrazolones. The solid chelates were synthesized, separated, analyzed and their structures were elucidated. The data obtained show that almost all of the prepared chelates contain water molecules in their coordination sphere. The initial stage in the thermal decomposition process of these chelates shows the presence of water molecule, the second denotes to the intermediate products. The final decomposition products were found to be the respective metal oxides. The NMR spectrum of 3-methyl-4-nitroso-5-pyrazolone ligand shows the existence of the oxime rather than the nitroso form. 3-phenyl-4-nitroso-5-pyrazolone acts as a neutral bidentate ligand whereas 3-methyl-4-nitroso-5-pyrazolone acts as monobasic bidentate ligand bonded to the metal ions through the two oxygen atoms of the carbonyl and nitroso groups. The solid chelates prepared behave as non-electrolytes in DMF solution. The coordination numbers of the obtained chelates using 3-methyl-4-nitroso-5-pyrazolone are four on applying the mole ratio 1:1 and six on using 1:2 mole ratio. In case of using the ligand 3-phenyl-4-nitroso-5-pyrazolone the coordination number is six in both cases. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
Two coordination polymers with 5-aminoisophthalic acid (H2aip), [Ni(μ-aip)(H2O)2(tmeda)]n (1) and {H2dap[Zn2(μ-aip)(μ3-aip)2]?9H2O}n (2) (H2aip = 5-aminoisophthalic acid, tmeda = N,N,N′-N′-tetramethylethylenediamine, dap = 1,3-diaminopropane) have been synthesized. Elemental and thermal analyses, magnetic susceptibilities, IR, AAS, mass and UV–vis spectroscopic studies have been performed to characterize the compounds. Nickel(II) has octahedral geometry by two oxygens of different carboxylates, bidentate, tmeda as bidentate chelating and two water ligands. Zn(II) has tetrahedral geometry by three oxygens of different carboxylate groups and one nitrogen by amine of aip. 1 crystallizes in the orthorhombic crystal system with space group Pccn and 2 in monoclinic crystal system with space group P21/c. Complex 2 exhibits photoluminescence properties in the solid state at room temperature. This study determined the susceptibility patterns of 1 and 2 against bacterial, yeast and mold micro-organisms. Antimicrobial activities were done on 12 different micro-organisms using the micro-dilution method. Tested microbial species were inhibited by 1 with a Minimum inhibitory concentrations (MIC) of 375–3000 μg mL?1. Compound 2 showed antimicrobial activities against tested micro-organisms with a MIC of 188–1500 μg mL?1. Compound 2 showed antibacterial activity against Legionella pneumophila sg1 375 μg mL?1 (MIC value).  相似文献   

16.
The complexes with the empirical formula M(4-bipy)(ClCH2COO)2 ×nH2O (where: 4-bipy=4,4'-bipyridine, L=ClCH2 COO, M (II)=Mn, Co, Ni, Cu) were prepared and characterized via the IR and electronic (VIS) spectra and conductivity measurements. Thermal decomposition of these compounds was studied. During heating in air dehydration processes occur. The anhydrous compounds decompose at high temperature to oxides. The principal volatile mass fragments correspond to: H2O, CO2, CH3Cl, HCl, Cl2 and other. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
Three new paramagnetic ion-directed coordination frameworks, {[Co(4)(H(2)O)(2)(μ(3)-OH)(2)(atz)(2)(nip)(2)]·3H(2)O}(n) (1), {[Mn(4)(H(2)O)(2)(μ(3)-OH)(2)(atz)(2)(nip)(2)]·H(2)O·MeOH}(n) (2) and {[Cu(2)(H(2)O)(μ(3)-OH)(atz)(nip)]·2H(2)O}(n) (3), were, respectively, obtained by solvo-/hydrothermal reactions of 5-amino-1H-tetrazole (Hatz), 5-nitroisophathalic acid (H(2)nip) with an inorganic Co(II), Mn(II) or Cu(II) salt. The former two complexes are two-dimensional (2D) covalent layers built from butterfly-shaped tetranuclear M(4)(μ(3)-OH)(2) clusters and double atz(-) and nip(2-) linkers. Whereas complex 3 is a 3D framework with scarcely observed corner-sharing Cu(3)(μ(3)-OH) Δ-chains extended by nip(2-) linkages, in which the anionic atz(-) ligand acts as a reinforcement to consolidate the Δ-chain. Magnetically, due to the interplay of the anisotropy of spin carrier and magnetic exchange interactions from the adjacent spin carriers, the complexes exhibit spin-canted antiferromagnetism with a Néel temperature lower than 2.0 K for 1 and an antiferromagnetic ordering with a slight field-induced spin-flop transition for 2. In contrast, complex 3 with a local Kagomé sublattice displays spin-frustrated antiferromagnetic behavior with magnetic ordering at 16.0 K.  相似文献   

18.
Conditions for the preparation of Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II)3,3-dimethylglutarates were investigated and their quantitative composition, solubility in water at 293 K and magnetic moments were determined. IR spectra and powder diffraction patterns of the complexes prepared with general formula MC7H10O4nH2O (n=0−2) were recorded and their thermal decomposition in air were studied. During heating the hydrated complexes of Mn(II),Co(II), Ni(II) and Cu(II) are dehydrated in one step and next all the anhydrous complexes decompose to oxides directly (Mn, Co, Zn) or with intermediate formation free metal (Ni,Cu) or oxocarbonates (Cd). The carboxylate groups in the complexes studied are bidentate. The magnetic moments for the paramagnetic complexes of Mn(II), Co(II), Ni(II) and Cu(II)attain values 5.62, 5.25, 2.91 and 1.41 M.B., respectively. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

19.
Two flexible thioether-containing heterocyclic ligands bis(2-pyrazylmethyl)sulfide (L1) and 2-benzylsulfanylmethylpyrazine (L2) have arene rings with differing pi-acidities which were used to probe anion-pi binding in five 1-D coordination polymers formed from the metal salts Co(ClO4)2, Ni(NO3)2, and Cd(NO3)2. In {[Co(L1)(MeCN)2](ClO4)2}infinity (1), {[Ni(L1)(NO3)2]}infinity (2), and {[Cd2(L1)(MeCN)(H2O)(NO3)4].H2O}infinity (3.H2O), the symmetrical ligand L1 was bound facially to the metal center and was bridged through a pyrazine donor to an adjacent metal forming a polymer chain. The folding of L1 formed U-shaped pi-pockets in 1 and 3.H2O which encapsulated free and bound anions, respectively. The anions interacted with the pi-acidic centers in a variety of different binding modes including anion-pi-anion and pi-anion-pi sandwiching. A wider pi-pocket was formed in 2 which also contained anion-pi interactions. The polymer chains in 2 were interdigitated through a rare type of complementary T-shaped N(pyrazine)...pi interaction. In {[Co(L2)(H2O)3](ClO4)2.H2O}infinity (4.H2O) and {[Cd(L2)(H2O)(NO3)2]}infinity (5), the unsymmetrical ligand L2 chelated the metal center and bridged through a pyrazine donor to an adjacent metal forming a polymer chain. The ligand arrangement resulted in the anions in both structures being involved in only anion-pi-anion sandwich interactions. In 4.H2O, the noncoordinated ClO4- anions interacted with only one chain while in 5 the coordinated NO3- anions acted as anion-pi supramolecular synthons between chains. Comparison between the polymers formed with ligands L1 and L2 showed that only the more pi-acidic ring was involved in the anion-pi interactions.  相似文献   

20.
《European Polymer Journal》1986,22(10):811-816
The polymerization of N-vinylcarbazole by 13X molecular sieves modified by five different transition metal ions, viz. Mn(II), Co(II), Ni(II), Cu(II) and Zn(II), has been studied under various conditions. The order of reactivity follows the trend: Mn(II) ≈ Cu(II) > Co(II) > Zn(II) > Ni(II) at pH ∼ 3.55 and an exchange level of 30% of the metal ion. The polymerizations are believed to occur by a dual-ion-initiation mechanism in which both metal ions and proton centres participate. The overall energy of activation (Ea) for each system decreases with decreasing pH of the exchanging salt solution. Average activation energy on proton centre (EH) and that on metal ion centre (Ea) have been evaluated for each system. Ea, EH and Ec have been shown to correlate with one another. The molecular weights and their distributions are affected by the nature of the metal ion and also by the protonic centres. The possibility of a correlation of the catalytic activity of the modified 13X with ionic radius, electronegativity and normal co-ordination number has been examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号