首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
This work deals with the determination of free sulfite in wine by zone electrophoresis (ZE) with on-line isotachophoresis (ITP) sample pretreatment on a column-coupling (CC) chip with conductivity detection. A rapid pre-column conversion of sulfite to hydroxymethanesulfonate (HMS), to minimize oxidation losses of the analyte, was included into the developed analytical procedure, while ITP and ZE were responsible for specific analytical tasks in the separations performed on the CC chip. ITP, for example, eliminated the sample matrix from the separation compartment and, at the same time, provided a selective concentration of HMS before its transfer to the ZE stage of the separation. On the other hand, ZE served as a final separation (destacking) method and it was used under the separating conditions favoring a sensitive conductivity detection of HMS. In this way, ITP and ZE cooperatively contributed to a 900 microg/l concentration detectability for sulfite as attained for a 60 nl load of wine (a 15-fold wine dilution and the use of a 0.9 microl sample injection channel of the chip) and, consequently, to the determination of free sulfite when this was present in wine at the concentrations as low as 3 mg/l. The separations were carried out in a closed separation compartment of the chip with suppressed hydrodynamic and electroosmotic flows. Such transport conditions, minimizing fluctuations of the migration velocities of the separated constituents, made a frame for precise migration and quantitation data as achieved for HMS in both the model and wine samples. Ninety percent recoveries, as typically obtained for free sulfite in wine samples, indicate promising potentialities of the present method as far as the accuracies of the provided analytical results are concerned.  相似文献   

2.
Sample pre-concentration by isotachophoresis in microfluidic devices   总被引:1,自引:0,他引:1  
We have designed microfluidic devices with the aim of coupling isotachophoresis (ITP) with zone electrophoresis (ZE) as a method to increase the concentration limit of detection in microfluidic devices. We used plastic multi-channel chips, designed with long sample injection channel segments, to increase the sample loading. The chip was designed to allow stacking of the sample into a narrow band by discontinuous ITP buffers and subsequent separation in the ZE mode. In the ITP-ZE mode, with a 2-cm long sample injection plug, sensitivity was increased by 400-fold over chip ZE and we found that the separation performance after the ITP stacking was comparable to that of regular chip ZE. We report sub-picomolar limits of detection of fluorescently labeled ACLARA eTag reporter molecules electrokinetically injected from cell lysate sample matrixes containing moderate salt concentrations. We evaluated sample injections from buffers with varied ionic strengths and found that efficient stacking and separations were obtained in both low and high conductivity buffers, including physiological buffer with at least 140 mM salt. We applied ITP-ZE to the analysis of a cell surface protease (ADAM 17) which used live intact cells in physiological buffers with detection limits below 10 cells/assay.  相似文献   

3.
This review focuses on capillary electrophoretic separations performed on capillary electrophoresis chips (CE chips) with hydrodynamically closed separation systems in a context with transport processes (electroosmotic flow (EOF)) and hydrodynamic flow (HDF)) that may accompany the separations in these devices. It also reflects some relevant works dealing with conventional CE operating under such hydrodynamic conditions. The use of zone electrophoresis (ZE), isotachophoresis (ITP) and their on-line combination (ITP-ZE) on the single-column and column-coupling CE chips with the closed separation systems and related problems are key topics of the review. Some attention is paid to sample pretreatment in the separations performed on the CE chips. Here, mainly potentialities of the ITP-ZE combination in trace analysis applications of the miniaturized systems are discussed in a broader extent. Links between the ZE separation and detection provide a frame for the discussion of current status of the detection on the CE chips. Analytical applications illustrate potentialities of the CE chips operating with the closed separation systems (suppressed HDF and EOF) to the determination of small ions present in various matrices by ZE, ITP and ITP-ZE.  相似文献   

4.
A poly(methylmethacrylate) chip, provided with two separation channels in the column-coupling (CC) arrangement and on-column conductivity detection sensors and intended, mainly, to isotachophoresis (ITP) and ITP-capillary zone electrophoresis (CZE) separations was developed recently. The present work was aimed at assessing its performance relevant to the detection and quantitation of the ITP analytes. Hydrodynamic (HDF) and electroosmotic (EOF) flows of the solution in the separation compartment of the CC chip were suppressed and electrophoresis was a dominant transport process in the ITP separations with model analytes carried out in this context. When the surfaces of the detection electrodes of the conductivity sensors on the chip were appropriately cleaned qualitative indices of the test analytes [relative step heights (RSHs)], provided by a particular detection sensor, agreed within 1% (expressed via RSDs of the RSH values). Their long-term reproducibilities for one sensor, as estimated from 70 ITP runs repeated in 5 days, were 2% or less. Sensor-to-sensor and chip-to-chip fluctuations of the RSH values for the test analytes were 2.5% or less. In addition, experimentally obtained RSH values agreed well with those predicted by the calculations based on the ITP steady-state model. Reproducibilities of the migration velocities attainable on the CC chips with suppressed EOF and HDF, assessed from the migration time measurements of the ITP boundary between well-defined positions on the separation channels of the chips (140 repeated runs on three chips), ranged from 1.4 to 3.3% for the migration times in the range of 100-200 s. Within-day repeatabilities of the time-based zone lengths for the test analytes characterized 2% RSDs, while their day-to-day repeatabilities were less than 5%. Chip-to-chip reproducibilities of the zone lengths, assessed from the data obtained on three chips for 100 ITP runs, were 5-8%.  相似文献   

5.
This feasibility study deals with column switching in zone electrophoresis (ZE) separations on a column coupling (CC) chip. The column switching implemented into the ZE separations an on-chip sample clean up applicable for both the multicomponent and high salinity samples. In addition, complemented by different separation mechanisms in the coupled columns (channels), it provided benefits of two-dimensional separations. Properly timed column switching gave column-to-column transfers of the analytes, characterized by 99-102% recoveries, delivered to the second separation stage on the chip the analyte containing fractions contaminated only with minimum amounts of the matrix constituents. A diffusion driven transport of the matrix constituents to the second channel of the chip (due to direct contacts of the electrolyte solutions in the bifurcation region), representing 0.1-0.2% of the loaded sample constituents, was found to accompany the sample clean up performed on the CC chip. This source of potential disturbances to the separation in the second channel, however, is not detectable in a majority of practical situations. With respect to a 900 nl volume of the sample channel on the CC chip, the electric field and isotachophoresis (ITP) stackings were employed to minimize the injection dispersion in the separations and concentrate the analytes. Here, the column switching, removing a major part of the stacker from the separation system, provided a tool effective in a control of the destacking of analytes. Highly reproducible ZE separations as attained in this work also for the chip-to-chip and equipment-to-equipment frames can be ascribed, at least in part, to suppressions of electroosmotic and hydrodynamic flows of the solutions in which the separations were performed.  相似文献   

6.
A feasibility study was performed using zone electrophoresis (ZE) coupled on‐line with isotachophoresis (ITP) sample pretreatment on a poly(methyl methacrylate) column‐coupling chip with integrated conductivity detection for direct determination of drugs in serum. Valproic acid (an antiepileptic drug), having a therapeutic range of 0.35–0.69 mmol/L (50–100 mg/L), was a test analyte while reference serum samples served as proteinaceous matrices. ITP provided in the ITP‐ZE combination a multitask sample pretreatment: (1) separation of the analyte from the serum matrix and its concentration into a narrow ITP band, (2) removal of the matrix constituents migrating in the ITP stack from the separation compartment of the chip, (3) ITP stacking of the drug released on a continuous electrophoretic decomposition of the drug‐protein complex. A high sample loadability, closely linked with the use of ITP in the first separation stage, made it possible to inject diluted serum samples with the aid of a 0.95 μL sample channel of the chip. Consequently, a 1–2 μmol/L concentration limit of quantitation for valproate from the response of the conductivity detector in the ZE stage of the combination was reached. The drug could be reliably determined in less than 10 minutes also in instances when its concentration in serum was below the lower value of the therapeutic range. 90–94% recoveries of valproate from serum samples were obtained in its direct ITP‐ZE determination when the filtration of the diluted serum (a 0.45 μm pore size filter) was the only pre‐column sample handling operation. No disturbances attributable to the precipitation of proteins from the loaded samples in the chip channels were detected.  相似文献   

7.
The use of a poly(methylmethacrylate) chip, provided with a pair of on-line coupled separation channels and on-column conductivity detectors, to isotachophoresis (ITP) separations of optical isomers was investigated. Single-column ITP, ITP in the tandem-coupled columns, and concentration-cascade ITP in the tandem-coupled columns were employed in this investigation using tryptophan enantiomers as model analytes. Although providing a high production rate (about 2 pmol of a pure tryptophan enantiomer separated per second), single-column ITP was found suitable only to the analysis of samples containing the enantiomers at close concentrations. A 94-mm separation path in ITP with the tandem-coupled separation channels made possible a complete resolution of a 1.5 nmol amount of the racemic mixture of the enantiomers. However, this led only to a moderate extension of the concentration range within which the enantiomers could be simultaneously quantified. The best results in this respect were achieved by using a concentration-cascade of the leading anions in the tandem-coupled separation channels. Here, a high production rate, favored in the first separation channel, was followed by the ITP migration of the enantiomers in the second channel under the electrolyte conditions enhancing their detectabilities. In dependence on the migration configuration of the enantiomers, this technique made possible their simultaneous determinations when their ratios in the loaded sample were 35:1 or less (D-tryptophan a major constituent) and 70:1 or less (L-tryptophan a major constituent).  相似文献   

8.
This work deals with zone electrophoresis (ZE) separations of proteins on a poly(methyl methacrylate) chip with integrated conductivity detection. Experiments were performed in the cationic mode of the separation (pH 2.9) with a hydrodynamically closed separation compartment and suppressed electroosmotic flow. The test proteins reached the detector in less than 10 min under these working conditions and their migration times characterized excellent repeatabilities (0.1–0.6% RSD values). The chip-to-chip agreements of the migration times, evaluated from the ZE runs performed on three chips, were within 1.5%. The conductivity detection provided for protein, loaded on the chip at 10–1000 μg/ml concentrations, detection responses were characterized by 1–5% RSD values of their peak areas. Such migration and detection performances made a frame for reproducible baseline separations of a five-constituent mixture (cytochrome c, avidin, conalbumin, human hemoglobin and trypsin inhibitor). On the other hand, a high sample injection channel/separation compartment volume ratio of the chip (500 nl/8500 nl) restricted the resolution of proteins of very close effective mobilities in spite of the fact that in the initial phase of the separation an electric field stacking was applied. A maximum macroconstituent/trace constituent ratio attainable for proteins on the chip was assessed for cytochrome c (quantifiable when its concentration in the loaded sample was 10 μg/ml) and apo-transferrin (containing a trace constituent migrating in the position of cytochrome c detectable when the load of apo-transferrin was 2000 μg/ml). This assessment indicated that a ratio of 1000:1 is attainable with the aid of conductivity detection on the present chip.  相似文献   

9.
The use of a poly(methylmethacrylate) chip, provided with two separation channels in the column-coupling (CC) arrangement and on-column conductivity detection sensors, to electrophoretic separations of a group of inorganic anions (chloride, nitrate, sulfate, nitrite, fluoride and phosphate) that need to be monitored in various environmental matrices was studied. The electrophoretic methods employed in this study included isotachophoresis (ITP) and capillary zone electrophoresis (CZE) with on-line coupled ITP sample pretreatment (ITP-CZE). Hydrodynamic and electroosmotic flows of the solution in the separation compartment of the CC chip were suppressed and electrophoresis was a dominant transport process in the separations performed by these methods. ITP separations on the chip provided rapid resolutions of sub-nmol amounts of the complete group of the studied anions and made possible rapid separations and reproducible quantitations of macroconstituents currently present in water samples (chloride, nitrate and sulfate). However, concentration limits of detection attainable under the employed ITP separating conditions (2-3 x 10(-5) mol/l) were not sufficient for the detection of typical anionic microconstituents in water samples (nitrite, fluoride and phosphate). On the other hand, these anions could be detected at 5-7 x 10(-7) mol/l concentrations by the conductivity detector in the CZE stage of the ITP-CZE combination on the CC chip. A sample clean-up performed in the ITP stage of the combination effectively complemented such a detection sensitivity and nitrite, fluoride and phosphate could be reproducibly quantified also in samples containing the macroconstituents at 10(4) higher concentrations. ITP-CZE analyses of tap, mineral and river water samples showed that the CC chip offers means for rapid and reproducible procedures to the determination of these anions in water (4-6 min analysis times under our working conditions). Here, the ITP sample pretreatment concentrated the analytes and removed nanomol amounts of the macroconstituents from the separation compartment of the chip within 3-4 min. Both the ITP and ITP-CZE procedures required no or only minimum manipulations with water samples before their analyses on the chip. For example, tap water samples were analyzed directly while a short degassing of mineral water (to prevent bubble formation during the separation) and filtration of river water samples (to remove particulates and colloids) were the only operations needed in this respect.  相似文献   

10.
This work deals with the determination of total sulfite in wine. The determination combines an in-sample hydrogen peroxide oxidation of total sulfite in alkalized wine to sulfate with the separation and quantitation of the latter anion by zone electrophoresis (ZE) on-line coupled with isotachophoresis (ITP) on a column-coupling chip. Sample clean up, integrated into the ITP-ZE separation, eliminated wine matrix in an extent comparable to that provided by a highly selective distillation isolation of sulfite. At the same time, conductivity detection, employed to the detection of sulfate in the ZE stage of the ITP-ZE combination, provided for sulfate the concentration limit of detection corresponding to a 90 microg/l concentration of sulfite in the loaded sample (0.9 microl). Such a detectability allowed a reproducible quantitation of total sulfite when its concentration in wine was 15 mg/l. Formaldehyde binding of free sulfite in wine, included into the pre-column sample preparation, prevented an uncontrolled oxidation of this sulfite form. This step contributed to an unbiased determination of sulfate present in the original wine sample (this determination corrected for the concentration of sulfate determined in the sample after the peroxide oxidation of sulfite to the value equivalent to the total sulfite). The 99-101% recoveries of sulfite, determined for appropriately spiked wine samples, indicate a very good accuracy of the present method. Such a statement also supports excellent agreements of the results of quantitation based on the in-sample peroxide oxidation of the total sulfite (bound sulfite released at a high pH) with those in which this analyte was isolated from wine by distillation (bound sulfite released at a very low pH).  相似文献   

11.
The use of a poly(methylmethacrylate) capillary electrophoresis chip, provided with a high sample load capacity separation system (a 8500 nL separation channel coupled to a 500 nL sample injection channel) and a pair of on-chip conductivity detectors, for zone electrophoresis (ZE) determination of oxalate in urine was studied. Hydrodynamic and electroosmotic flows of the solution in the separation compartment of the chip were suppressed and electrophoresis was a dominant transport process in the separations performed on the chip. A low pH of the carrier electrolyte (4.0) provided an adequate selectivity in the separation of oxalate from anionic urine constituents and, at the same time, also a sufficient sensitivity in its conductivity detection. Under our working conditions, this anion could be detected at a 8 x 10(-8) mol/L concentration also in samples containing chloride (a major anionic constituent of urine) at 3.5 x 10(-3) mol/L concentrations. Such a favorable analyte/matrix concentration ratio (in part, attributable to a transient isotachophoresis stacking in the initial phase of the separation) made possible accurate and reproducible (typically, 2-5% relative standard deviation (RSD) values of the peak areas of the analyte in dependence on its concentration in the sample) determination of oxalate in 500 nL volumes of 20-100-fold diluted urine samples. Short analysis times (about 280 s), no sample pretreatment (not considering urine dilution) and reproducible migration times of this analyte (0.5-1.0% RSD values) were characteristic for ZE on the chip. This work indicates general potentialities of the present chip design in rapid ZE analysis of samples containing the analyte(s) at high ionic matrix/analyte concentration ratios.  相似文献   

12.
We have evaluated double-stranded DNA separations in microfluidic devices which were designed to couple a sample preconcentration step based on isotachophoresis (ITP) with a zone electrophoretic (ZE) separation step as a method to increase the concentration limit of detection in microfluidic devices. Developed at ACLARA BioSciences, these LabCard trade mark devices are plastic 32 channel chips, designed with a long sample injection channel segment to increase the sample loading. These chips were designed to allow stacking of the sample into a narrow band using discontinuous ITP buffers, and subsequent separation in the ZE mode in sieving polymer solutions. Compared to chip ZE, the sensitivity was increased by 40-fold and we showed baseline resolution of all fragments in the PhiX174/HaeIII DNA digest. The total analysis time was 3 min/sample, or less than 100 min per LabCard device. The resolution for multiplexed PCR samples was the same as obtained in chip ZE. The limit of detection was 9 fg/microL of DNA in 0.1xpolymerase chain reaction (PCR) buffers using confocal fluorescence detection following 488 nm laser excitation with thiazole orange as the fluorescent intercalating dye.  相似文献   

13.
Kriikku P  Grass B  Hokkanen A  Stuns I  Sirén H 《Electrophoresis》2004,25(10-11):1687-1694
Analysis of the beta-blockers oxprenolol, atenolol, timolol, propranolol, metoprolol, and acebutolol in human urine by a combination of isotachophoresis (ITP) and zone electrophoresis (ZE) was investigated. Methods were developed with a conventional capillary electrophoresis (CE) apparatus and a poly(methyl methacrylate) (PMMA) microchip system. With CE the separation of oxprenolol, atenolol, timolol, and acebutolol from a standard solution containing 5 microg/mL of each compound was accomplished by performing ZE with transient ITP. The electrolyte system consisted of 10 mM sodium morpholinoethane sulfonate (pH 5.5) and 0.1% methylhydroxyethylcellulose as the leading electrolyte and 30 mM ortho-phosphoric acid (pH 2.0) as both the terminating and the ZE background electrolyte. With the microchip system the separation of oxprenolol and acebutolol from a standard solution containing 10 microg/mL of each compound was accomplished by a coupled-channel ITP-ZE device using the same leading electrolyte solution as the CE system but 5 mM glutamic acid (pH 3.4) as terminating and background electrolytes. The systems were used for analyses of patient urine samples. Water-soluble hydrophilic matrix compounds were removed from the urine samples by solid-phase extraction (SPE). Limits of quantification below 5 microg/mL could be achieved. The PMMA ITP-ZE chip has not earlier been used for analyses of any drugs from urine samples.  相似文献   

14.
Perfluorinated carboxylic acids (PFCAs), amphiphiles of anthropogenic origin, are spread worldwide throughout the environment. This work deals with their zone electrophoresis (ZE) separation on a chip with coupled columns and integrated conductivity detection. Analogies with the electrophoretic behavior of PFCAs and fatty acids were employed in a search for electrolyte conditions suitable for their separation. ZE separations in the water-ethanol electrolyte systems, based on differences in the ionic mobilities of the anions of PFCAs, provided favorable resolution and detection conditions of the homologues containing up to 10 carbon atoms in the alkyl chain. Concentration limits of detection of 0.3-6.5 micromol/L were attained for PFCAs (loaded by a 900 nL volume sample injection channel of the chip) under these separation conditions. The material of which the chip was made [poly(methylmethacrylate)] restricted its use in investigations of the separations of higher PFCA homologues as it was damaged by ethanolic and/or methanolic background electrolyte solutions required in experiments with these amphiphilic compounds.  相似文献   

15.
The use of capillary zone electrophoresis (CZE) on-line coupled with isotachophoresis (ITP) sample pretreatment (ITP-CZE) on a poly(methylmethacrylate) chip, provided with two separation channels in the column-coupling (CC) arrangement and on-column conductivity detection sensors, to the determination of bromate in drinking water was investigated. Hydrodynamic and electroosmotic flows of the solution in the separation compartment of the chip were suppressed and electrophoresis was a dominant transport process in the ITP-CZE separations. A high sample load capacity, linked with the use of ITP in this combination, made possible loading of the samples by a 9.2 microL sample injection channel of the chip. In addition, bromate was concentrated by a factor of 10(3) or more in the ITP stage of the separation and, therefore, its transfer to the CZE stage characterized negligible injection dispersion. This, along with a favorable electric conductivity of the carrier electrolyte solution, contributed to a 20 nmol/L (2.5 ppb) limit of detection for bromate in the CZE stage. Sample cleanup, integrated into the ITP stage, effectively complemented such a detection sensitivity and bromate could be quantified in drinking water matrices when its concentration was 80 nmol/L (10 ppb) or slightly less while the concentrations of anionic macroconstituent (chloride, sulfate, nitrate) in the loaded sample corresponding to a 2 mmol/L (70 ppm) concentration of chloride were still tolerable. The samples containing macroconstituents at higher concentrations required appropriate dilutions and, consequently, bromate in these samples could be directly determined only at proportionally higher concentrations.  相似文献   

16.
Ma B  Zhou X  Wang G  Huang H  Dai Z  Qin J  Lin B 《Electrophoresis》2006,27(24):4904-4909
A quartz microchip integrated isotachophoretic (ITP) preconcentration with zone electrophoresis (ZE) separation was fabricated using a novel multi-point pressure method featured in normal temperature and lower pressure during bonding process. ITP followed by subsequential ZE of two flavonoids, quercetin and isorhamnetin on the microchip was performed consecutively on the homemade microfluidic workstation with UV detection, resulting in a decreased detectable concentration of 32-fold, compared to the ZE mode only, and their detection limits decreased down to 0.2 microg/mL and 1.2 microg/mL, respectively.  相似文献   

17.
The use of a poly(methylmethacrylate) capillary electrophoresis chip, provided with a high sample load capacity separation system (a 8500 nL separation channel combined with a 500 nL sample injection channel) and a pair of on‐chip conductivity detectors, for zone electrophoresis (ZE) determination of oxalate in beer was studied. Hydrodynamic and electroosmotic flows of the solution in the separation compartment of the chip were suppressed and electrophoresis was a dominant transport process in the separations performed on the chip. A low pH of the carrier electrolyte (3.8), implemented by aspartic acid and bis‐tris propane, provided an adequate selectivity in the separation of oxalate from anionic beer constituents and, at the same time, also a sufficient sensitivity in its conductivity detection. Under our working conditions, this anion could be detected at a 0.5 μmol/L concentration also in samples containing chloride (a major anionic constituent of beer) at a 1800 higher concentration. Such a favorable analyte/matrix concentration ratio made possible accurate and reproducible [typically, 2–5% relative standard deviation (RSD) values of the peak areas of the analyte in dependence on its concentration in the sample] determination of oxalate in 500 nL volumes of 20–50‐fold diluted beer samples. Short analysis times (about 200 s), minimum sample preparation, and reproducible migration times of this analyte (0.5–1.0% RSD values) were characteristic for ZE on the chip.  相似文献   

18.
Determination of impurities in ionic liquids (ILs) remains a difficult task. In this work, the hyphenation of isotachophoretic (ITP) preconcentration to zone electrophoresis (ZE) has been explored for the trace analysis of the cationic impurities Na(+), Li(+), and methylimidazolium (MI(+)) in butylmethylimidazolium (BMI(+))-based ILs. Simultaneous detection of UV-transparent and UV-absorbing impurities was ensured by a BGE composed of creatinine-acetate buffer. To induce ITP, three different strategies were evaluated: (i) Sample self-stacking ensured by the addition of ammonium acetate (NH(4)Ac) to 25-50-fold diluted IL solution (transient ITP). (ii) Complete ITP-ZE separation performed in a single capillary: ITP was realized in discontinuous electrolytes comprising an 80 mM NH(4)Ac, 40 mM acetic acid, 30 mM alpha-CD, pH 5.05, leading electrolyte (LE) and a 10 mM creatinine, 10 mM acetic acid, pH 4.9, terminating electrolyte (TE). To create the ZE stage, the ITP stack of analytes was moved back toward the capillary inlet by pressure and simultaneously the capillary was filled with the BGE. This protocol made it possible to accommodate a 2.5-times diluted IL sample. (iii) Complete counterflow ITP-ZE with continuous electrokinetic sample supply: the ITP stage was performed in a capillary filled with a 150 mM NH(4)Ac, 75 mM acetic acid, 30 mM alpha-CD, pH 5.0 LE, with 40-times diluted IL at the capillary inlet. BMI(+) from IL acts as the terminating ion. The LODs reached in this latter case were at the 10 and 1 ppb levels for MI(+) and Li(+) in diluted IL matrix, respectively.  相似文献   

19.
A new method for the determination of trace glyphosate (GLYP), non-selective pesticide, by CZE with online ITP pre-treatment of drinking waters on a column-coupling (CC) chip has been developed. CC chip was equipped with two injection channels of 0.9 and 9.9 μL volumes, two separation channels of 9.3 μL total volume and a pair of conductivity detectors. A very effective ITP sample clean-up performed in the first channel at low pH (3.2) was introduced for quick CZE resolution and detection of GLYP carried out at higher pH (6.1) in the second channel on the CC chip. The LOD for GLYP was estimated at 2.5 μg/L (15 nmol/L) using a 9.9 |mL volume of the injection channel. ITP-CZE analyses of model and real samples have provided very favorable intra-day (0.1-1.2% RSD) and inter-day (2.9% RSD) repeatabilities of the migration time for GLYP while 0.2-6.9% RSD values were typical for the peak area data. Recoveries of GLYP in spiked drinking water varied in the range of 99-109%. A minimum pre-treatment of drinking water (degassing and dilution) and a short analysis time (ca. 10 min) were distinctive features of ITP-CZE determinations of GLYP on the CC chip with high sample volume loaded, as well.  相似文献   

20.
Hradski  Jasna  Bodor  R&#;bert  Mas&#;r  Mari&#;n 《Chromatographia》2014,77(21):1461-1468

Analysis of inorganic ions in cerebrospinal fluid (CSF) is used mainly in the diagnostics of central nervous system diseases, such as Alzheimer’s disease or multiple sclerosis. A new analytical method for fast determination of inorganic cations (ammonium, calcium, magnesium, sodium and potassium) and anions (chloride, sulfate, nitrite and nitrate) in CSF on an electrophoretic microchip was developed in this context. Zone electrophoresis (ZE) separations were performed on the microchip with coupled channels (CC) and contact conductivity detection. Two different propionate background electrolytes were used for the sequential determination of cations at pH 3.1 and anions at pH 4.3. ZE was used for the determination of cationic constituents while ZE–ZE approach was employed for the determination of chloride in the first separation channel on the CC microchip and other anionic micro-constituents in the second channel. LOD values were in the range of 0.003–0.012 mg L−1 and 0.019–0.047 mg L−1 for cations and anions, respectively. Repeatability of migration time was up to 1.2 % for both cations and anions. Repeatability of peak area ranged from 0.3 to 5.6 % for cations and from 0.6 to 6.0 % for anions. Recovery of both cations and anions was in the range 90–106 %. CSF samples were only diluted appropriately without other sample pretreatment prior to analysis. Developed sequential method is suitable for fast determination of the studied cations and anions in CSF with total analysis time <15 min.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号