首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
The transitional isoelectric focusing (IEF) process (the course of pH gradient formation by carrier ampholytes (CAs) and the correlation of the focusing time with CA concentration) were investigated using a whole-column detection capillary isoelectric focusing (CIEF) system. The transitional double-peak phenomenon in IEF was explained as a result of migration of protons from the anodic end and hydroxyl ions from the cathodic end into the separation channel and the higher electric field at both acidic and basic sides of the separation channel. It was observed that focusing times increase logarithmically with CA concentration under a constant applied voltage. The correlation of focusing time with CA concentration was explained by the dependence of the charge-transfer rate on the amount of charged CAs within the separation channel during focusing.  相似文献   

4.
X Z Wu  S K Sze  J Pawliszyn 《Electrophoresis》2001,22(18):3968-3971
Miniaturization of whole-column imaging capillary isoelectric focusing (CIEF) is discussed. A 1.2 cm capillary was used as a separation column for CIEF. The experimental results for the analysis of two pI markers and the protein myoglobin showed that good CIEF separation results could be obtained. Secondly, a light-emitting diode (LED) was used as the light source for the whole-column absorbance imaging detection. The focusing of both the pI markers and myoglobin were observed with the LED light source. The whole-column imaging CIEF instrument was simplified and miniaturized by the use of the LED. Further developments are also discussed.  相似文献   

5.
P Todd  W Elsasser 《Electrophoresis》1990,11(11):947-952
By complexing polyols with borate in recycling isoelectric focusing and by varying the ratio of polyol to borate over the useful pH range of 4.0-6.0, it is possible to control pH. Twelve solutions of 0.1 M boric acid and varying glycerol concentration were used to vary pH in a twelve-compartment commercial recycling isoelectric focusing (RIEF) system. Various concentrations of boric acid were tested as anolyte, and various Tris(hydroxymethylamino)methane-borate buffer systems were tested as catholyte. Electroosmosis, hydrogen ion flow, and fluid balancing were characterized in two glycerol gradients; one was maintained at 0.06 pH/fraction and the other at 0.12 pH/fraction. In the latter case, ovalbumin (pI4.70) migrated to the pH 4.61 and 4.72 compartments. It is concluded that the borate-glycerol system can be adequately stabilized in RIEF for isoelectric purification of certain proteins.  相似文献   

6.
In an attempt to prepare quasi-isoelectric buffers as BGEs for CE, carrier ampholytes (CAs) (Ampholine, pH 7-9; Servalyt, pH 7-9; Bio-Lyte, pH 8-10 and Pharmalyte, pH 8-10.5) have been subdivided with the Rotofor into 20 fractions, of ca. 0.1 pH unit span, whose composition has been studied by CZE-MS. The results have allowed identifying the number of different molecular mass compounds present in every commercial brand, as well as the number of isoforms (having identical mass, but representing positional isomers) associated with a given M(r) value. Ampholine is composed of 29 species, for a total of 85 different isoforms; Bio-Lyte is made of 43 compounds, for a total of 136 isoforms; Pharmalyte comprises 58 different M(r) chemicals, for a total of 102 isoforms and Servalyt is constituted by 65 species, for a total of 306 compounds (all of these values to be considered as minimum numbers, as detected by the present methodology). Surprisingly, and contrary to theory, a very large proportion (up to 70%) of these species are 'poor carrier ampholytes', in that they are unable to focus and are evenly distributed along the generated pH gradient in the electric field. Paradoxically, the pH gradient is created and sustained by the minority of species (30% for three brands, up to 50% for Pharmalyte) that appear to focus at their pI position into reasonably sharp zones. Even in the narrowest pI fraction, up to 20 different compounds can be detected. It is concluded that very few amines with different useful pK values are utilized for the synthesis and that a new generation of CAs with a more diversified population of amines with proper pK values within the given pH intervals should be sought. Ampholine, the poorest of the commercial brands, appears to be still made with the original synthesis devised by Vesterberg, i.e. by reacting a concoction of oligoamines with alpha,beta-unsaturated acids.  相似文献   

7.
A simple method for fractionating synthetic carrier ampholytes is reported, based on the principle of continuous-flow isoelectric focusing in gel-stabilized layers. An 8% ampholyte solution, encompassing the pH range 3-9.5, is separated into 12 fractions in a chamber filled with Sephadex G-100 by a continuous-flow technique. We are thus able to obtain ampholytes of narrow pH range, encompassing approximately 2 pH units, whose resolving power is comparable with that obtained with commercial Ampholine covering similar pH ranges.  相似文献   

8.
The various transport phenomena involved in recycling isoelectric focusing are analyzed for their contributions to band spreading so as to find ways of improving the resolution of this liquid-phase protein purification method. A numerical model is proposed that takes into account diffusion, electroosmosis and electrophoretic migration as a function of pH. The electrohydrodynamic effects have so far been neglected in these calculations. The results of these calculations are compared with experimental measurements performed in different chamber geometries, with a variety of proteins and under different operating conditions, always chosen to avoid flow instabilities. This comparison shows that the resolution of this process is greatly impaired if the electroosmotic slip velocity at the wall is not suppressed.  相似文献   

9.
10.
The carrier ampholytes-based (CA-based) isoelectric focusing (IEF) experiment evolved from Svensson's closed system IEF (constant spatial current density, absence of convective mixing, counter-balancing electrophoretic and diffusive fluxes yielding a steady state pH gradient) to the contemporary open system IEF (absence of convective mixing, large cross-sectional area electrode vessels, lack of counter-balancing electrophoretic- and diffusive fluxes leading to transient pH gradients). Open system IEF currently is described by a two-stage model: In the first stage, a rapid IEF process forms the pH gradient which, in the second stage, is slowly degraded by isotachophoretic processes that move the most acidic and most basic CAs into the electrode vessels. An analysis of the effective mobilities and the effective mobility to conductivity ratios of the anolyte, catholyte, and the CAs indicates that in open system IEF experiments a single process, transient bidirectional isotachophoresis (tbdITP) operates from the moment current is turned on until it is turned off. In tbdITP, the anolyte and catholyte provide the leading ions and the pI 7 CA or the reactive boundary of the counter-migrating H3O+ and OH ions serves as the shared terminator. The outcome of the tbdITP process is determined by the ionic mobilities, pKa values, and loaded amounts of all ionic and ionizable components: It is constrained by both the transmitted amount of charge and the migration space available for the leading ions. tbdITP and the resulting pH gradient can never reach steady state with respect to the spatial coordinate of the separation channel.  相似文献   

11.
Different ways of determining isoelectric points (pI) of proteins in capillary isoelectric focusing are reviewed here. Due to the impossibility of direct pH measurements in the liquid phase, such assessments have to rely on the use of pI markers. Different types of pI markers have been described: dyes, fluorescently labelled peptides, sets of proteins of known pI values. It appears that, perhaps, the best system is a set of 16 synthetic peptides, trimers to hexamers, made to contain each a Trp residue for easy detection at 280 nm. By a careful blend of acidic (Asp, Glu), mildly basic, with pK around neutrality (His), and basic (Lys, Arg) amino acids, it is possible to obtain a series of pI markers with pI values quite evenly distributed along the pH scale, possessing good buffering capacity and conductivity around their pI values and thus focusing as sharp peaks. Another approach to pI determination is the monitoring of the current during mobilization: this allows, with the aid of known pI markers, to calibrate the system with a pI/current graph. Pitfalls and common errors in pI determinations are reviewed here and guidelines given for minimizing such errors in pI estimation.  相似文献   

12.
Commercial carrier ampholytes, obtained by coupling polyethylene polyamines to acrylic acid, exhibit a conductivity minimum in the pH range 5.5-6.5 owing to the lack of appropriate pK values of the polyamine in this pH region. By replacing acrylic with itaconic acid, it has been possible to effect substantial improvements in the pH range 5.5-6.5 as itaconic acid has a pK2 value of 5.45. Upon coupling, the pK of the gramma-carboxyl group remains virtually unaltered. With itoconic acid carrier ampholytes it has been possible to improve the conductivity in the pH range 5.5-6.5 by as much as 400% compared with conventional carrier ampholytes. It is suggected that the commercial products should be supplemented with itaconic acid carrier ampholytes in order to obtain a more uniform conductivity and buffering capacity in the pH range 3-10.  相似文献   

13.
Electrokinetic processes that lead to pH gradient instabilities in carrier ampholyte-based IEF are reviewed. In addition to electroosmosis, there are four of electrophoretic nature, namely (i) the stabilizing phase with the plateau phenomenon, (ii) the gradual isotachophoretic loss of carrier ampholytes at the two column ends in presence of electrode solutions, (iii) the inequality of the mobilities of positively and negatively charged species of ampholytes, and (iv) the continuous penetration of carbonate from the catholyte into the focusing column. The impact of these factors to cathodic and anodic drifts was analyzed by simulation of carrier ampholyte-based focusing in closed and open columns. Focusing under realistic conditions within a 5 cm long capillary in which three amphoteric low molecular mass dyes were focused in a pH 3–10 gradient formed by 140 carrier ampholytes was investigated. In open columns, electroosmosis displaces the entire gradient toward the cathode or anode whereas the electrophoretic processes act bidirectionally with a transition around pH 4 (drifts for pI > 4 and pI < 4 typically toward the cathode and anode, respectively). The data illustrate that focused zones of carrier ampholytes have an electrophoretic flux and that dynamic simulation can be effectively used to assess the magnitude of each of the electrokinetic destabilizing factors and the resulting drift for a combination of these effects. Predicted drifts of focused marker dyes are compared to those observed experimentally in a setup with coated capillary and whole column optical imaging.  相似文献   

14.
15.
The synthesis of carrier ampholytes suitable for isoelectric focusing is described. The mixture of hexamethylenetetramine (HMTA), triethylenetetramine (TETA), tetraethylenepentamine (TEPA) and pentaethylenehexamine (PEHA) ampholytes closely resembles commercial Ampholine, and covers the pH range 3-9.5. We have been able to detect focused ampholytes in a gel slab, taking advantage of their different refractive indices, and to assess their relative amounts along the pH gradient. PEHA ampholytes contain up to 20% of chromophoric structures, with two UV peaks at 368 and 315 nm, in a pH-dependent equilibrium, associated with a very weak nitrogen function having a pK of 1.1. This could be the pK6 of the last amino group in PEHA. However, NMR spectra failed to reveal any nitrogen heterocyclic structure formed during the synthesis. This mixture of ampholytes exhibits good conductivity, produces smooth pH gradients and allows sharp protein separations in the pH range 3-9.5. Their synthesis is very easy and their cost is extremely low. Their availability sould make feasible large-scale preparative isoelectric focusing, and attract more interest to continuous-flow techniques, where large amounts of ampholytes are required.  相似文献   

16.
17.
Investigation of isoelectric focusing (IEF) kinetics has been performed to provide the theoretical basis for miniaturization of classical IEF in immobilized pH-gradients. Standard IEF demands colinearity of the electric field and pH-gradient directions (serial devices). It is shown that the IEF separation process based on a continuous, serial pH gradient is incompatible with miniaturization of separation devices. The new realization of the IEF device by a parallel IEF chip is suggested and analyzed. The main separation tool of the device is a dielectric membrane (chip) with conducting channels that are filled by Immobiline gels of varying pH. The membrane is held perpendicular to the applied electric field and proteins are collected (trapped) in the channels whose pH are equal to the pI of the proteins. The pH value of the surrounded aqueous solution is not equal to any channel's pH. The fast particle transport between different channels takes place due to convection in the aqueous solution. The new device geometry introduces two new spatial scales to be considered: the scale of transition region from a solution to the gel in a channel and a typical channel size. The corresponding time scales defining the IEF process kinetics are analyzed and scaling laws are obtained. It is shown both theoretically and experimentally that parallel IEF accelerates the fractionation of proteins by their pI down to several minutes and enables possible efficient sample collection and purification.  相似文献   

18.
19.
Three new types of capillary coatings for capillary isoelectric focusing that avoid siloxane chemistry, resulting in hydrolytically stable coatings, are described and tested: phenyl-silica, acrylamide-reacted vinyl-silica, and pure PTFE. Capillaries of these three types were compared using standard proteins and a biological mixture of proteins similar to what might be encountered in actual use. Of these, the acrylamide-coated capillary produced the highest-quality results. In contrast to capillaries prepared using siloxane reactions, the capillaries described herein exhibited greatly enhanced stability at high pH.  相似文献   

20.
The influence of several operation conditions on separation of recombinant human erythropoietin glycoforms by capillary isoelectric focusing (cIEF) is explored. From this study it is deduced that in order to separate several glycoforms of erythropoietin, urea has to be added to sample, which should not be completely depleted of the excipients used in its formulation. On-line desalting does not provide separation enhancement for samples with high content of salt. Better resolution is obtained using a mixture of a broad and a narrow pH-range carrier ampholytes than with either one used separately. Under the experimental conditions, focusing voltages of 25 kV improve separation compared to lower and higher electric fields. Focusing times shorter than the time necessary for electric current to reach a minimum provide similar separations than longer focusing times at which a minimum value of the current has already been achieved. The optimized method allows the separation and quantitation in 12 min of at least seven bands containing glycoforms of recombinant erythropoietin with apparent isoelectric points in the range 3.78–4.69. Compared to flat-bed isoelectric focusing, cIEF provides better separation of bands of glycoforms in a shorter time, and allows quantitative determination. Capillary zone electrophoresis (CZE) gives rise to resolution of erythropoietin glycoforms similar to that obtained by cIEF. Although CZE requires a longer analysis time, its reproducibility in terms of peak area of glycoforms is better than in cIEF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号