共查询到15条相似文献,搜索用时 125 毫秒
1.
应用计算机编程构造出了存在和不存在表面偏析的无序二元合金NixCu1-x(x=0.4)(100)表面及(110)表面的原子集团模型,然后按覆盖度θ=0.5,构造出了O吸附后的原子集团模型,应用Recursion方法计算了O在NixCu1-x(存在偏析和不存在偏析时)无序二元合金(100)和(110)表面吸附的电子结构.由此得出:1)O吸附使合金表面态密度峰降低,带宽加宽,并且表面Ni原子的d电子与吸附质O原子的s,p电子的共价作用比Cu更强烈;2)O吸附在NixCu1-x(x=0.4)(110)表面比(100)表面更稳定;3)O的吸附抑制了Cu在表面富集,且这种作用主要表现在表面一层. 相似文献
2.
根据计算机编程构造出了存在和不存在表面偏析的无序二元合金NixCu1-x(x=0.4)的原子集团模型,然后按覆盖度θ=0.5,构造出了CO表面吸附的模型 ,应用Recursion方法计算了CO在(NixCu1-x)(存在偏析和不存在偏析时)合金表面不同位置(顶位和芯位)吸附的电子结构 .由此得出:1)CO在顶位吸附时较稳定;2)CO吸附使合金表面态密度峰降低,带宽加宽,使d轨道的局域性变弱;3)CO的吸附抑制了Cu
关键词:
化学吸附
表面偏析
Recursion方法
态密度 相似文献
3.
通过构造无序二元合金NixCu1-x(x=0.4)(110)表面的原子集团模型用来研究表面偏析. 根据这个模型,按覆盖度μ=0.33,应用Recursion方法计算了甘氨酸在NixCu1-x无序二元合金(110)表面吸附的电子结构. 结果表明,Ni0:4Cu0:6合金表面存在着Cu的偏析,甘氨酸的吸附抑制了Cu在表面的偏析,并使得合金表面的态密度在费米能级附近发生了很大变化,吸附时合金表面与甘氨酸之间发生了电荷转移. 相似文献
4.
应用计算机编程构造出了存在和不存在表面偏析的无序二元合金NixCu1-x (x=0.4)(100)表面及(110)表面的原子集团模型,然后按覆盖度θ=0.5,构造 出了O吸附后的原子集团模型,应用Recursion方法计算了O在NixCu1-x(存在偏析和不存在偏析时)无序二元合金(100)和(110)表面吸附的电子结构.由此 得出:1)O吸附使合金表面态密度峰降低,带宽加宽,并且表面Ni原子的d电子与吸附质O原 子的s,p电子的共价作用比Cu更强烈;2)O吸附在NixCu1-x(x=0.4) (110)表面比(100)表面更稳定;3)O的吸附抑制了Cu在表面富集,且这种作用主要表 现在表面一层.
关键词:
化学吸附
表面偏析
Recursion方法
态密度 相似文献
5.
构造了考虑吸附与偏析相互作用情况下无序二元合金RhxPt1-x(110)吸附氧表面的原子集团模型,其中O的覆盖度为0.5;构造了考虑杂质Ni,Cu,W对合金可能产生影响的吸附表面原子集团模型,杂质的掺入采用替位式.应用recursion方法计算了合金表面的环境敏感镶嵌能和电子结构.环境敏感镶嵌能计算表明杂质Ni,Cu和W均使O吸附RhxPt1-x(110)合金表面
关键词:
化学吸附
表面偏析
recursion方法
态密度 相似文献
6.
构造了考虑吸附与偏析相互作用情况下无序二元合金Rhx Pt1-x(110)吸附氧表面的原子集团模型,其中O的覆盖度为0.5;构造了考虑杂质Ni,Cu,W对合金可能产生影响的吸附表面原子集团模型,杂质的掺入采用替位式.应用recursion方法计算了合金表面的环境敏感镶嵌能和电子结构.环境敏感镶嵌能计算表明杂质Ni,Cu和W均使O吸附RhxPt1-x(110)合金表面偏析情况发生逆转,Ni对Rh-Pt合金偏析的影响最大,其次是Cu,W对合金偏析的影响最小;电子结构计算表明杂质Ni,Ca W存在于合金表面时,使Rh与O的共价相互作用减弱,使表面偏析发生逆转,Pt再次偏析于表面. 相似文献
7.
8.
9.
10.
通过一种空位模型详细的描述了In在Al(001)表面的扩散偏析过程,利用周期性密度泛函理论方法计算了这个偏析过程中每步构型的能量和In原子扩散的能量壁垒,并对可能的偏析机理进行分析.结果表明:In原子从Al(001)表面第二层扩散偏析至表面层时,系统的能量降低了0.64 eV,最大的扩散迁移壁垒为0.34 eV;而从表面更内层向表面第二层扩散时系统能量基本保持不变,扩散需要克服的能量壁垒为0.65 eV,说明In原子在Al(001)表面只能由体内向表面扩散偏析.In在Al(001)的清洁表面具有强烈的偏析趋势,在热力学上是容易进行的.
关键词:
密度泛函理论
表面偏析
扩散
Al合金 相似文献
11.
An atomic group model of the disordered binary alloy Rhx-Pt1-x has been constructed to investigate surface segregation. According to the model, we have calculated the electronic structure of the Rhx-Pt1-x alloy surface by using the recursion method when O atoms are adsorbed on the Rhx-Pt1-x (110) surface under the condition of coverage 0.5. The calculation results indicate that the chemical adsorption of O changes greatly the density of states near the Fermi level, and the surface segregation exhibits a reversal behaviour. In addition, when x 〈 0.3, the surface on which O is adsorbed displays the property of Pt; whereas when x 〉 0.3 it displays the property of Rh. 相似文献
12.
Effects of rapid thermal annealing on crystallinity and Sn surface segregation of Ge_(1-x)Sn_x films on Si(100) and Si(111) 下载免费PDF全文
Germanium-tin films with rather high Sn content(28.04% and 29.61%) are deposited directly on Si(100) and Si(111)substrates by magnetron sputtering. The mechanism of the effect of rapid thermal annealing on the Sn surface segregation of Ge_(1-x)Sn_x films is investigated by x-ray photoelectron spectroscopy(XPS) and atomic force microscopy(AFM). The x-ray diffraction(XRD) is also performed to determine the crystallinities of the Ge_(1-x)Sn_x films. The experimental results indicate that root mean square(RMS) values of the annealed samples are comparatively small and have no noticeable changes for the as-grown sample when annealing temperature is below 400℃. The diameter of the Sn three-dimensional(3 D) island becomes larger than that of an as-grown sample when the annealing temperature is 700℃. In addition, the Sn surface composition decreases when annealing temperature ranges from 400℃ to 700℃. However, Sn bulk compositions in samples A and B are kept almost unchanged when the annealing temperature is below 600℃. The present investigation demonstrates that the crystallinity of Ge_(1-x)Sn_x/Si(111) has no obvious advantage over that of Ge_(1-x)Sn_x/Si(100) and the selection of Si(111) substrate is an effective method to improve the surface morphologies of Ge_(1-x)Sn_x films. We also find that more severe Sn surface segregation occurs in the Ge_(1-x)Sn_x/Si(111) sample during annealing than in the Ge_(1-x)Sn_x/Si(100) sample. 相似文献
13.
采用离散单元数学模型对一充装量为50%的水平薄滚筒内S形二元颗粒体系的分离模式进行了数值模拟试验,研究了不同碰撞阻尼参数下的分离过程,分析了阻尼对分离过程及分离模式的影响.模拟结果表明阻尼对滚筒内颗粒的分离过程及分离模式影响很大,在S形二元颗粒体系水平薄滚筒内,阻尼可控制渗透和离析的协同作用以及自由表面层的流动形式,最终影响分离模式的形成;当阻尼太大时分离模式只能形成月亮模式,阻尼太小时可形成不明显的花瓣模式,只有当阻尼在适当的范围内,自由表面流动层形成雪崩流型式时,分离模式才会呈现规则的花瓣模式,试验结
关键词:
滚筒
模式形成
径向分离
离散单元法 相似文献
14.
Using the modified analytical embedded atom method (MAEAM) and combining with Monte Carlo computer simulations, the surface segregations of Pd-Rh and Pt-Pd-Rh have been simulated. The simulation results indicate that Pd enriched at both Pd-Rh and Pt-Pd-Rh (1 1 1) surface, but in the ternary ones, the surface Pd concentrations are influenced by bulk Rh compositions. Differences and similarities of the surface segregations between Pt-Pd, Pd-Rh and Pt-Pd-Rh have been discussed. Because of the lack of the experimental data, we finally compared present simulation results with available experiment data and theory calculation results of Au-Cu-Ni and Cu-Ag-Au. It is shown that the present results of simulations are in qualitative agreement with the experimentally observed trends, and it will be helpful for a better understanding of the segregation behaviors in Pt-Pd-Rh. 相似文献
15.
The surface segregation energies for a single metal impurity to the (100) surface of nine fcc metals (Cu, Ag, Au, Ni, Pd,
Pt, Rh, Al and Ir) have been calculated using the MAEAM and molecular dynamics (MD) simulation. The results show that the
effect of the surface is down to the fourth-layer and an oscillatory or monotonic damping (|E
1| > |E
2| > |E
3| > |E
4|) phenomenon in segregation energy has been obtained. The absolute value of the segregation energy E
1 for a single impurity in the first atomic layer is much higher than that in the nether layers. Thus, whether the surface
segregation will work or not is mainly determined by E
1 which is in good relation to the differences in surface energy between the impurity and host crystals ΔQ = Q
imp − Q
hos. So we conclude that an impurity with lower surface energy will segregate to the surface of the host with higher surface
energy.
相似文献