首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By means of the combined use of surface and micro-analytical techniques the surface chemical composition of ancient coins and some aspects of their manufacturing techniques and of degradation mechanisms have been elucidated. Two case histories are described concerning silver Roman Republican coins and some coins plated with thin films of silver and gold. In particular, the coinage methods, the silvering and gilding techniques and the origin of the embrittlement of these selected Roman coins have been studied by means of the combined use of selected-area X-ray photoelectron spectroscopy (SA-XPS) and scanning electron microscopy and energy-dispersive spectrometry (SEM+EDS). This innovative approach has been utilised in order to gain further insight into the microchemical structure of the external regions of the coins as well as of the bulk features. The results show the use of mercury to coat a copper or silver core with a thin film of precious metals that could be considered the most important advance in the technology of gilding to be made in antiquity. Furthermore, the microchemical investigation of brittle Roman silver coins has allowed us to identify the origin of this troublesome problem. The microchemical results indicate that brittleness is induced by the presence of a low amount of lead that is retained in supersaturated solution when the cast blank was produced. This latter element segregates at the grain boundaries during the coin production and the subsequent long-term ageing at room temperature, thus inducing the alloy fracturing along the weakened grain boundaries. PACS 68.55.Jk; 68.35.Dv; 68.37.Hk; 68.55.Nq; 81.05.Bx  相似文献   

2.
The bulk and surface chemical composition of Renaissance coins minted at Gubbio (Central Italy) from 1508 to 1516 and from 1521 to 1538 by Francesco Maria della Rovere is investigated by means of the combined use of different analytical techniques such as scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), and optical microscopy (OM). The aim of the work is to determine the bulk chemical composition of these commonly used coins at Gubbio, to ascertain their surface nature and if they were coated by a thin film of silver or other white metals similar to silver.The results indicate that the coins were produced by coating a copper core with a thin film of silver and antimony, and also with lead whose thickness is of a few microns which is now scarcely present because the original silvered surface was almost entirely removed by degradation phenomena. Furthermore, the SEM+EDS results show that the surface content of silver and antimony cannot be attributed to long-term selective corrosion phenomena leaving the coin slightly silver or antimony enriched. Therefore, the presence of silver or apparently silver-like metals i.e. antimony and lead, could be considered as a deliberate surface finishing of the coins obtained via inverse segregation or intentional selective corrosion based on pickling solutions or a combination of them. From a historical point of view the presence of a Ag or Sb film on the surface of the coins discloses the occurrence of a period of economic difficulties. PACS 68.55.Jk; 68.35.Dv; 68.37.Hk; 68.55.Nq; 81.05.Bx  相似文献   

3.
In the framework of the PROMET project (European Commission contract No. 509126) aimed to develop new analytical techniques and materials for monitoring and protecting metal artefacts and monuments from the Mediterranean region, the corrosion products grown on silver Roman coins during archaeological burial is studied by means of scanning electron microscopy combined with energy dispersive spectrometry (SEM-EDS), X-ray diffraction (XRD) and optical microscopy (OM) techniques. PACS 68.55.Jk; 68.35.Dv; 68.37.Hk; 68.55.Nq; 81.05.Bx  相似文献   

4.
A large number of bronze artefacts found during archaeological excavations carried out in Italy in different contexts have been studied. Their chemical composition and metallurgical features have been determined by the combined use of different analytical surface and bulk techniques, such as optical microscopy (OM), scanning electron microscopy with energy dispersive X-ray micro-analysis (SEM-EDS), X-raydiffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The study of the corrosion products grown on the archaeological Cu-based artefacts and of their metallurgical features has revealed the quite ubiquitous and nearly constant presence of chlorine as the main corroding agent, and the different structures of the alloys. This information has been used to produce reference Cu-based alloys, whose chemical composition and micro-chemical structure is similar to that of the ancient alloys, and to propose the guidelines for carrying out the accelerated degradation tests to produce corroded samples for testing corrosion inhibiting products. The proposed tests were based on soil, chemical and (chemical+soil)-induced degradation, and the micro-chemical structure of the artificially produced corrosion layers has been compared to those grown on archaeological artefacts during burial. The comparison shows that the (chemical+soil)-induced degradation produces “patinas” that are similar to those grown on archaeological artefacts from a chemical, structural and micro-morphological point of view. PACS 68.55.Jk; 68.35.Dv; 68.37.Hk; 68.55.Nq; 81.05.Ba  相似文献   

5.
In the framework of the EFESTUS project (funded by the European Commission, contract No. ICA3-CT-2002-10030) the corrosion products of a large number of archaeological bronze artefacts are investigated by means of the combined use of scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), X-ray diffraction (XRD) and optical microscopy (OM) and tentative correlation of their nature with the chemical composition of the artefacts and the burial context is proposed.The results provide good insight into the corrosion layers and evidence in some bronze Roman coins and artefacts; the occurrence of uncommon corrosion phenomena that give rise to the formation of a yellowish-green complex chlorine-phosphate of lead (pyromorphite, (PbCl)Pb4(PO4)3) and of a gold-like thick layer of an iron and copper sulphide (chalcopyrite, CuFeS2). The micro-chemical and micro-structural results show that the coins were buried in a soil enriched in phosphorus for the accidental presence of a large amount of decomposing fragments of bones or in an anaerobic and humus rich soil where the chalcopyrite layer has been produced via the interaction between the iron of the soil, the copper of the coin and the sulphur produced by the decomposition of organic matter in an almost oxygen free environment. Finally, some unusual periodic corrosion phenomena occurring in high tin bronze mirrors found at Zama (Tunisia) are described. PACS 68.55Jk; 68.35 Dv; 68.37Hk; 68.55 Nq; 81.05 Bx  相似文献   

6.
《X射线光谱测定》2005,34(2):128-130
Punch‐marked coins are the oldest known numismatic objects used in ancient India. Seven punch‐marked silver coins were analysed by using the non‐destructive multi‐elemental PIXE technique. A 3 MeV proton beam from a pelletron accelerator was used for irradiation of these samples to obtain the spectral data and GUPIX software was employed to derive the elemental concentrations. The results reveals that silver, copper, gold and lead are significant constituents of the punch‐marked silver coins and there are also traces of elements such as Ti, Cr, Mn, Fe, Co, Ni, As and Y, which seems to imply that PIXE can be used effectively for the non‐destructive quantitative analysis of ancient coins. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

7.
Celtic gold coins found in Southern Germany were studied by Mössbauer spectroscopy, electron microprobe analysis and X-ray diffraction with special attention to coins rich in silver and copper. In such coins the electron microprobe analyses reveal a gold enrichment in a surface layer of more than 100 μm thickness. 197Au conversion electron Mössbauer spectroscopy also shows that the surface of the coins consists of two phases, one of which is strongly enriched in gold compared to the bulk composition. In comparison with laboratory experiments the observed phenomena suggest that coin production in Celtic times may have involved deliberate heating and etching steps to enrich the surface layer in gold by depleting it of silver and copper.  相似文献   

8.
Gold and gold-silver nanoparticles prepared by flame spray pyrolysis (FSP) were characterized by electron microscopy, in situ X-ray absorption spectroscopy (XANES and EXAFS), X-ray diffraction (XRD) and their catalytic activity in CO oxidation. Within this one-step flame-synthesis procedure, precursor solutions of dimethyl gold(III) acetylacetonate and silver(I) benzoate together with the corresponding precursor of the silica, iron oxide or titania support, were sprayed and combusted. In order to prepare small metal particles, a low noble metal loading was required. A loading of 0.1-1 wt.% of Au and Ag resulted in 1-6 nm particles. The size of the noble metal particles increased with higher loadings of gold and particularly silver. Both scanning transmission electron microscopy (STEM) combined with energy dispersive X-ray spectroscopy (EDXS) and X-ray absorption spectroscopy (XAS) studies proved the formation of mixed Au-Ag particles. In case of 1% Au-1% Ag/SiO2, TEM combined with electron spectroscopic imaging (ESI) using an imaging filter could be used in addition to prove the presence of silver and gold in the same noble metal particle. CO oxidation in the presence of hydrogen was chosen as a test reaction sensitive to small gold particles. Both the influence of the particle size and the alloying of gold and silver were reflected in the CO oxidation activity.  相似文献   

9.
A large number of Cu-based archaeological artefacts from the Mediterranean basin have been selected for investigation of their chemical composition, metallurgical features and corrosion products (i.e. the patina).The guidelines for the selection of the Cu-based artefacts have taken into account the representativeness of the Mediterranean archaeological context, the manufacturing technique, the degradation state and the expected chemical composition and structure of the objects.The results show wide variation of the chemical composition of the alloys that include all kinds of ancient Cu-based alloys such as low and high tin, and also leaded bronzes, copper and copper-iron alloys.The examination of the alloy matrix shows largely different metallurgical features thus indicating the use of different manufacturing techniques for producing the artefacts. The results of the micro-chemical investigation of the patina show the structures and the chemical composition of the stratified corrosion layers where copper or tin depletion phenomenon are commonly observed with a remarkably surface enrichment of some soil elements such as P, S, Ca, Si, Fe, Al and Cl. This information indicates the strict interaction between soil components and corrosion reactions and products. In particular, the ubiquitous and near constant presence of chlorine in the corrosion layers is observed in the patina of the archaeological Cu-based artefacts found in different contexts in Italy, Turkey, Jordan, Egypt, Spain and Tunisia. This latter occurrence is considered dangerous because it could induce a cyclic corrosion reaction of copper that could disfigure the artefact.The micro-chemical and micro-structural results also show that another source of degradation of the bronze archaeological artefacts, are their intrinsic metallurgical features whose formation is induced during the manufacturing of the objects, carried out in ancient times by repeated cycles of cold or hot mechanical work and thermal treatments. These combined treatments induce crystallisation and segregation phenomena of the impurities along the grain boundaries and could cause mechanical weakness and increase the extent of the inter-granular corrosion phenomena. PACS 68.55.Jk; 68.35.Dv; 68.37.Hk; 68.55.Nq; 81.05.Bx  相似文献   

10.
We present a new technique for the fabrication of thin films at highly oblique flux incidence angles, in which the direction of film growth and the direction of incoming deposition flux are decoupled. The technique offers a high level of control over the porosity of thin films, and has been used to make thin films with a uniform and highly porous microstructure of tightly interwoven nanoscale fibres. The nanofibrous films have been analysed using scanning and transmission electron microscopy, and will be useful for thin film applications relying on high porosity, such as humidity sensors and super-capacitors. PACS 68.55.Jk; 68.55.Ac; 81.05.Rm; 61.46.+w; 81.15.Ef  相似文献   

11.
Fluorescently labeled nanoparticles are widely used to investigate nanoparticle cell interactions by fluorescence microscopy. Owing to limited lateral and axial resolution, nanostructures (<100 nm) cannot be resolved by conventional light micro­scopy techniques. Especially after uptake into cells, a common fate of the fluorescence label and the particle core cannot be taken for granted. In this study, a correlative approach is presented to image fluorescently labeled gold nanoparticles inside whole cells by correlative light and electron microscopy (CLEM). This approach allows for detection of the fluorescently labeled particle shell as well as for the gold core in one sample. In this setup, A549 cells are exposed to 8 nm Atto 647N‐labeled gold nanoparticles (3.3 × 109 particles mL?1, 0.02 μg Au mL?1) for 5 h and are subsequently imaged by confocal laser scanning microscopy (CLSM) and transmission electron microscopy (TEM). Eight fluorescence signals located at different intracellular positions are further analyzed by TEM. Five of the eight fluorescence spots are correlated with isolated or agglomerated gold nanoparticles. Three fluorescence signals could not be related to the presence of gold, indicating a loss of the particle shell.  相似文献   

12.
《Applied Surface Science》2002,185(3-4):309-316
In this work some Renaissance lustre decorated ceramics have been examined. Our attention was directed to lustre which is a thin decorative metallic film applied on the surfaces of previously glazed ancient pottery.Some 16th century lustre ceramics shards from Deruta, Umbria (Italy) have been analysed by small angle X-ray scattering (SAXS) in order to characterise the dimension of the metal nanocrystals forming the thin lustre layer. This technique appeared to be a powerful tool to characterise lustre films nanostructure and may be successfully used for this purpose together with transmission electron microscopy (TEM). Furthermore, SAXS measurements are extremely suitable for the determination of polydispersity and average interparticle distance.The lustre surfaces have been also analysed by scanning electron microscopy plus X-ray energy dispersive spectrometry (SEM–EDX) in order to identify the metals present (silver, copper or both of them) and to establish copper/silver ratios. From the comparison between SAXS results and compositional data, it was possible to conclude that copper particles are smaller than the silver ones. We have evidenced how the microtexture as well as the chemical composition of the lustre layers are responsible for the gold or red colour typical of the lustre films.  相似文献   

13.
Zinc oxide thin films have been obtained by reactive pulsed laser ablation of a Zn target in O2 atmosphere (gas pressure 2 Pa) using a doubled frequency Nd:YAG laser (532 nm) which was also assisted by a 13.56 MHz radiofrequency (rf) plasma. The gaseous species have been deposited on Si(100) substrates positioned in on-axis configuration and heated from RT up to 500 °C. The obtained thin films have been compared to those produced in the same conditions by ablation of a ZnO target. The deposited thin films have been characterized by scanning electron microscopy, X-ray diffraction, Raman and infrared spectroscopy techniques. The influence of the rf plasma on the morphological and structural characteristics of these thin films is also briefly discussed. PACS 81.15.Fg; 68.55.Jk; 78.30.j  相似文献   

14.
In order to establish a new handling procedure for contaminated coins, the Coin Cabinet and the Conservation Science Department of the Kunsthistorisches Museum, Vienna, initiated a research project on corrosion effects of gold coins. By now, investigations on historic and contemporary coins included optical microscopy, scanning electron microscopy (SEM), Auger electron microscopy (AES), X-ray photoelectron microscopy (XPS), and electrochemical methods showing the distribution of pollutants.This work focuses on secondary ion mass spectrometry (SIMS) investigations merely showing the distribution of electronegative elements, such as sulfur, oxygen, and chlorine on the surface. Sulfur is highly suspected of causing the observed corrosion phenomena, and is indeed enriched near polluting splints. Since SIMS is a destructive method, the investigated samples are test coins with intentionally added impurities. These coins were manufactured in cooperation with the Austrian Mint. They were treated with potassium polysulfide (K2Sx) for 8 h gaining a rapid corrosion of the surface.SIMS mass spectra, depth profiles, and images were done (a) at non-polluted areas, (b) near polluted areas with slight coloring, and (c) directly at polluting stains showing enrichments of sulfur and chlorine. Due to the success of these investigations further studies on historic coins are intended.  相似文献   

15.
We present a study of resonant optical properties of gold‐protected silver nanoisland films. Silver nanoislands were grown on a glass substrate using out‐diffusion technique, the growth was followed by the deposition of nanometer‐thick gold coatings. Scanning electron microscopy and optical spectroscopy were used to characterize morphology and extinction spectra of the grown combined silver–gold nanostructures. Micro Raman spectroscopy of the combined nanoislands has demonstrated their signal enhancement factor exceeding that one of the initial silver nanoislands.  相似文献   

16.
On the north coast of present‐day Peru, between the Andes and the Pacific Ocean, approximately between 100 and 600 ad , the Moche civilization prospered. The Moche were very sophisticated artisans and metal smiths, so that they are considered the finest producers of jewels and artifacts of the region. Their metalworking ability was impressively demonstrated by the excavations of the tomb of the ‘Lady of Cao’ (dated around third–fourth century ad ) discovered by Regulo Franco in 2005. Impressive is the beauty of the artifacts, and also the variety of metallurgical solutions, demonstrated by not only the presence of objects composed of gold and silver alloys but also of gilded copper, gilded silver, and tumbaga, a poor gold Cu‐Au alloy subject to depletion gilding. About 100 metal artifacts from the tomb of the Lady of Cao, never before analyzed, were studied by using various portable equipments based on following non‐destructive and non‐invasive methods:
  • energy‐dispersive X‐ray fluorescence with completely portable equipments;
  • transmission of monenergetic X‐rays;
  • radiographic techniques; and
  • optical microscopy.
Gold objects and gold areas of nose decorations are characterized by approximately the same composition, that is, Au = (79.5 ± 2.5) %, Ag = (16 ± 3) %, and Cu = (4.5 ± 1.5) %, while silver objects and silver areas of the same nose decorations show completely erratic results, and a systematic high gold concentration. Many gilded copper and tumbaga artifacts were identified and analyzed. Further, soldering gold–silver was specifically studied by radiographs. Additional measurements are needed, particularly because of the suspect that depletion gilding was systematically employed also in the case of some nose decorations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
Two-photon photoemission electron microscopy (2P-PEEM) is used to measure the real and imaginary part of the dispersion relation of surface plasmon polaritons at different interface systems. A comparison of calculated and measured dispersion data for a gold/vacuum interface demonstrates the capability of the presented experimental approach. A systematic 2P-PEEM study on the dispersion relation of dielectric-loaded gold surfaces shows how effective the propagation of surface plasmon polaritons at a gold/para-hexaphenylene interface can be tuned by adjustment of the dielectric film thickness. Deviations of the experimental results from effective index calculations indicate the relevance of thin film peculiarities arising from the details of the growth process and corroborate the need of experimental analysis techniques for dispersion relation measurements.  相似文献   

18.
We have studied the surface enhanced Raman scattering from molecules adsorbed on thin gold overlayers on silver island films. The Raman scattering of gold cyanide species adsorbed on gold overlayers decreases in intensity with gold overlayer thickness between 0.5 – 10 Å . This intensity decrease is consistent with a simple model which takes into account the damping of the electromagnetic resonances of the silver islands by the absorbing gold overlayer. Implications of these findings for the enhancement of Raman scattering from adsorbates on other metals deposited as overlayers on silver will be discussed.  相似文献   

19.
Energy‐dispersive X‐ray fluorescence (EDXRF)‐analysis is a technique which in the case of metals analyzes thin surface layers. For example, when gold and silver alloys are analyzed, it typically interests a depth of microns up to a maximum of tens of microns. Therefore, it can give wrong results or be affected by a large indetermination when the sample composition is altered because of surface processes, as often happens when silver alloys are oxidated, and sometimes in the case of gold alloys rich on copper or silver. A complementary technique was therefore developed, of bulk analysis, which uses the same equipment employed for EDXRF‐analysis; the X‐ray beam from the X‐ray tube is monochromatized by means of a tin secondary target, which K lines bracket the silver‐K discontinuity. The sample to be analyzed is positioned between the secondary target and the detector. This technique is able to determine (by measuring the attenuation of tin‐K rays) thickness and/or composition of gold and silver alloys having a thickness of less than about 120 µm for gold and about 0.7 mm for silver. The method was tested with Au–Ag–Cu alloys of known composition and thickness and then applied to gold and silver artifacts from the tomb of the Lady of Cao, which belongs to the Moche pre‐hispanic culture from the North of Peru, and dates about 300 A.D. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
Gold and silver in dross were determined by energy‐dispersive X‐ray fluorescence technique. Sample was prepared by pressed pellet method using microcrystalline cellulose powder as binder, and a method of standard additions was used for quantification. Lβ X‐ray of gold (11.4 keV) and Kβ X‐ray of silver (24.9 keV) were used for analysis. The measured concentrations of gold and silver were 132 ± 8 and 1181 ± 84 mg kg?1, respectively. The results were validated by instrumental neutron activation analysis technique. The t‐test indicated that there was no significant difference between results obtained by the two techniques. Energy‐dispersive X‐ray fluorescence is a simple, precise and accurate technique for the determination of gold and silver in dross. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号