首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structures of two compounds of l ‐tartaric acid with quinoline, viz. the proton‐transfer compound quinolinium hydrogen (2R,3R)‐tartrate monohydrate, C9H8N+·C4H5O6·H2O, (I), and the anhydrous non‐proton‐transfer adduct with quinaldic acid, bis­(quinolinium‐2‐carboxyl­ate) (2R,3R)‐tar­taric acid, 2C10H7NO2·C4H6O6, (II), have been determined at 130 K. Compound (I) has a three‐dimensional honeycomb substructure formed from head‐to‐tail hydrogen‐bonded hydrogen tartrate anions and water mol­ecules. The stacks of π‐bonded quinolinium cations are accommodated within the channels and are hydrogen bonded to it peripherally. Compound (II) has a two‐dimensional network structure based on pseudo‐centrosymmetric head‐to‐tail hydrogen‐bonded cyclic dimers comprising zwitterionic quinaldic acid species which are inter­linked by tartaric acid mol­ecules.  相似文献   

2.
At one extreme of the proton‐transfer spectrum in cocrystals, proton transfer is absent, whilst at the opposite extreme, in salts, the proton‐transfer process is complete. However, for acid–base pairs with a small ΔpKa (pKa of base ? pKa of acid), prediction of the extent of proton transfer is not possible as there is a continuum between the salt and cocrystal ends. In this context, we attempt to illustrate that in these systems, in addition to ΔpKa, the crystalline environment could change the extent of proton transfer. To this end, two compounds of salicylic acid (SaH) and adenine (Ad) have been prepared. Despite the same small ΔpKa value (≈1.2), different ionization states are found. Both crystals, namely adeninium salicylate monohydrate, C5H6N5+·C7H5O3?·H2O, I , and adeninium salicylate–adenine–salicylic acid–water (1/2/1/2), C5H6N5+·C7H5O3?·2C5H5N5·C7H6O3·2H2O, II , have been characterized by single‐crystal X‐ray diffraction, IR spectroscopy and elemental analysis (C, H and N) techniques. In addition, the intermolecular hydrogen‐bonding interactions of compounds I and II have been investigated and quantified in detail on the basis of Hirshfeld surface analysis and fingerprint plots. Throughout the study, we use crystal engineering, which is based on modifications of the intermolecular interactions, thus offering a more comprehensive screening of the salt–cocrystal continuum in comparison with pure pKa analysis.  相似文献   

3.
In streptidinium sulfate monohydrate {systematic name: 1,1′‐[(1S,3R,4S,6R)‐2,4,5,6‐tetrahydroxycyclohexane‐1,3‐diyl]diguanidinium sulfate monohydrate}, C8H20N6O42+·SO42−·H2O, at 100 (2) K, the components are arranged in double helices based on hydrogen bonds. One helix contains streptidinium cations and the other contains disordered sulfate anions and solvent water molecules. The helices are linked into a three‐dimensional hydrogen‐bonded network by O—H...O and N—H...O hydrogen bonds.  相似文献   

4.
The structures of two brucinium (2,3‐dimeth­oxy‐10‐oxostrychnidinium) salts of the α‐hydr­oxy acids l ‐malic acid and l ‐tartaric acid, namely brucinium hydrogen (S)‐malate penta­hydrate, C23H27N2O4+·C4H5O5·5H2O, (I), and anhydrous brucinium hydrogen (2R,3R)‐tartrate, C23H27N2O4+·C4H5O6,(II), have been determined at 130 K. Compound (I) has two brucinium cations, two hydrogen malate anions and ten water mol­ecules of solvation in the asymmetric unit, and forms an extensively hydrogen‐bonded three‐dimensional framework structure. In compound (II), the brucinium cations form the common undulating brucine sheet substructures, which accommodate parallel chains of head‐to‐tail hydrogen‐bonded tartrate anion species in the inter­stitial cavities.  相似文献   

5.
The structures of two 1:1 proton‐transfer red–black dye compounds formed by reaction of aniline yellow [4‐(phenyldiazenyl)aniline] with 5‐sulfosalicylic acid and benzenesulfonic acid, and a 1:2 nontransfer adduct compound with 3,5‐dinitrobenzoic acid have been determined at either 130 or 200 K. The compounds are 2‐(4‐aminophenyl)‐1‐phenylhydrazin‐1‐ium 3‐carboxy‐4‐hydroxybenzenesulfonate methanol solvate, C12H12N3+·C7H5O6S·CH3OH, (I), 2‐(4‐aminophenyl)‐1‐phenylhydrazin‐1‐ium 4‐(phenyldiazenyl)anilinium bis(benzenesulfonate), 2C12H12N3+·2C6H5O3S, (II), and 4‐(phenyldiazenyl)aniline–3,5‐dinitrobenzoic acid (1/2), C12H11N3·2C7H4N2O6, (III). In compound (I), the diazenyl rather than the aniline group of aniline yellow is protonated, and this group subsequently takes part in a primary hydrogen‐bonding interaction with a sulfonate O‐atom acceptor, producing overall a three‐dimensional framework structure. A feature of the hydrogen bonding in (I) is a peripheral edge‐on cation–anion association also involving aromatic C—H...O hydrogen bonds, giving a conjoint R12(6)R12(7)R21(4) motif. In the dichroic crystals of (II), one of the two aniline yellow species in the asymmetric unit is diazenyl‐group protonated, while in the other the aniline group is protonated. Both of these groups form hydrogen bonds with sulfonate O‐atom acceptors and these, together with other associations, give a one‐dimensional chain structure. In compound (III), rather than proton transfer, there is preferential formation of a classic R22(8) cyclic head‐to‐head hydrogen‐bonded carboxylic acid homodimer between the two 3,5‐dinitrobenzoic acid molecules, which, in association with the aniline yellow molecule that is disordered across a crystallographic inversion centre, results in an overall two‐dimensional ribbon structure. This work has shown the correlation between structure and observed colour in crystalline aniline yellow compounds, illustrated graphically in the dichroic benzenesulfonate compound.  相似文献   

6.
The crystal structure of the hydrated proton‐transfer compound of the drug quinacrine [rac‐N′‐(6‐chloro‐2‐methoxyacridin‐9‐yl)‐N,N‐diethylpentane‐1,4‐diamine] with 4,5‐dichlorophthalic acid, C23H32ClN3O2+·2C8H3Cl2O4·4H2O, has been determined at 200 K. The four labile water molecules of solvation in the structure form discrete ...O—H...O—H... hydrogen‐bonded chains parallel to the quinacrine side chain, the two N—H groups of which act as hydrogen‐bond donors for two of the water acceptor molecules. The other water molecules, as well as the acridinium H atom, also form hydrogen bonds with the two anion species and extend the structure into two‐dimensional sheets. Between these sheets there are also weak cation–anion and anion–anion π–π aromatic ring interactions. This structure represents the third example of a simple quinacrine derivative for which structural data are available but differs from the other two in that it is unstable in the X‐ray beam due to efflorescence, probably associated with the destruction of the unusual four‐membered water chain structures.  相似文献   

7.
Remarkably enhanced stability of the self‐assembled hydrogen‐bonded heterocapsule 1?2 by the encapsulation of 1,4‐bis(1‐propynyl)benzene 3 a was found with Ka=1.14×109 M ?1 in CDCl3 and Ka2=1.59×108 M ?2 in CD3OD/CDCl3 (10 % v/v) at 298 K. The formation of 3 a @( 1?2 ) was enthalpically driven (ΔH°<0 and ΔS°<0) and there was a unique inflection point in the correlation between ΔH° versus ΔS° as a function of polar solvent content. The ab initio calculations revealed that favorable guest–capsule dispersion and electrostatic interactions between the acetylenic parts (triple bonds) of 3 a and the aromatic inner space of 1?2 , as well as less structural deformation of 1?2 upon encapsulation of 3 a , play important roles in the remarkable stability of 3 a @( 1?2 ).  相似文献   

8.
Molecular salts, often observed as cocrystals, play an important role in the fields of pharmaceutics and materials science, where salt formation is used to tune the properties of active pharmaceutical ingredients (APIs) and improve the stability of solid‐state materials. Salt formation via a proton‐transfer reaction typically alters hydrogen‐bonding motifs and influences supramolecular assembly patterns. We report here the molecular salts formed by the pyridyl bis‐urea macrocycle 3,5,13,15,21,22‐hexaazatricyclo[15.3.1.17,11]docosa‐1(21),7(22),8,10,17,19‐hexaene‐4,14‐dione, ( 1 ), and naphthalene‐1,5‐disulfonic acid (H2NDS) as two salt cocrystal solvates, namely 4,14‐dioxo‐3,5,13,15,21,22‐hexaazatricyclo[15.3.1.17,11]docosa‐1(21),7(22),8,10,17,19‐hexaene‐21,22‐diium naphthalene‐1,5‐disulfonate dimethyl sulfoxide disolvate, C16H20N6O22+·C10H6O6S22−·2C2H6OS, ( 2 ), and the corresponding monosolvate, C16H20N6O22+·C10H6O6S22−·C2H6OS, ( 3 ). This follows the ΔpKa rule such that there is a proton transfer from H2NDS to ( 1 ), forming the reported molecular salts through hydrogen bonding. Prior to salt formation, ( 1 ) is relatively planar and assembles into columnar structures. The salt cocrystal solvates were obtained upon slow cooling of dimethyl sulfoxide–acetonitrile solutions of the molecular components from two temperatures (363 and 393 K). The proton transfer to ( 1 ) significantly alters the conformation of the macrocycle, changing the formerly planar macrocycle into a step‐shaped conformation with transcis urea groups in ( 2 ) or into a bowl‐shape conformation with transtrans urea groups in ( 3 ).  相似文献   

9.
A sensitive hydrogen peroxide sensor based on horseradish peroxidase covalently attached to layered nonoriented MWNTs modified electrode is presented. Cyclic voltammetry results gave quasi‐reversible FeIII/FeII voltammetry. The electron transfer rate constant (ks) and Michaelis–Menten constant (KM) in pH 7 is 48.8±0.9 s?1 and 0.13±0.05 mM respectively. A linear calibration curve for hydrogen peroxide was obtained up to 120 nM under the optimized conditions with a remarkable detection limit of (S/N=3) 1.5 nM. Results suggest that the nonoriented nanotubes act as electrical conductors and may also provide large surface area facilitating facile electron transfer and excellent electrochemical catalysis.  相似文献   

10.
Maleic acid and fumaric acid, the Z and E isomers of butenedioic acid, form 1:1 adducts with 2‐amino‐1,3‐thiazole, namely 2‐amino‐1,3‐thiazolium hydrogen maleate (2ATHM), C3H5N2S+·C4H3O4, and 2‐amino‐1,3‐thiazolium hydrogen fumarate (2ATHF), C3H5N2S+·C4H3O4, respectively. In both compounds, protonation of the ring N atom of the 2‐amino‐1,3‐thiazole and deprotonation of one of the carboxyl groups are observed. The asymmetric unit of 2ATHF contains three independent ion pairs. The hydrogen maleate ion of 2ATHM shows a short intramolecular O—H...O hydrogen bond with an O...O distance of 2.4663 (19) Å. An extensive hydrogen‐bonded network is observed in both compounds, involving N—H...O and O—H...O hydrogen bonds. 2ATHM forms two‐dimensional sheets parallel to the ab plane, extending as independent parallel sheets along the c axis, whereas 2ATHF forms two‐dimensional zigzag layers parallel to the bc plane, extending as independent parallel layers along the a axis.  相似文献   

11.
Polymorph (Ia) of eldoral [5‐ethyl‐5‐(piperidin‐1‐yl)barbituric acid or 5‐ethyl‐5‐(piperidin‐1‐yl)‐1,3‐diazinane‐2,4,6‐trione], C11H17N3O3, displays a hydrogen‐bonded layer structure parallel to (100). The piperidine N atom and the barbiturate carbonyl group in the 2‐position are utilized in N—H...N and N—H...O=C hydrogen bonds, respectively. The structure of polymorph (Ib) contains pseudosymmetry elements. The two independent molecules of (Ib) are connected via N—H...O=C(4/6‐position) and N—H...N(piperidine) hydrogen bonds to give a chain structure in the [100] direction. The hydrogen‐bonded layers, parallel to (010), formed in the salt diethylammonium 5‐ethyl‐5‐(piperidin‐1‐yl)barbiturate [or diethylammonium 5‐ethyl‐2,4,6‐trioxo‐5‐(piperidin‐1‐yl)‐1,3‐diazinan‐1‐ide], C4H12N+·C11H16N3O3, (II), closely resemble the corresponding hydrogen‐bonded structure in polymorph (Ia). Like many other 5,5‐disubstituted derivatives of barbituric acid, polymorphs (Ia) and (Ib) contain the R22(8) N—H...O=C hydrogen‐bond motif. However, the overall hydrogen‐bonded chain and layer structures of (Ia) and (Ib) are unique because of the involvement of the hydrogen‐bond acceptor function in the piperidine group.  相似文献   

12.
Two inclusion compounds of dithiobiurea and tetrapropylammonium and tetrabutylammonium are characterized and reported, namely tetrapropylammonium carbamothioyl(carbamothioylamino)azanide, C12H28N+·C2H5N4S2, (1), and tetrabutylammonium carbamothioyl(carbamothioylamino)azanide, C16H36N+·C2H5N4S2, (2). The results show that in (1), the dithiobiurea anion forms a dimer via N—H...N hydrogen bonds and the dimers are connected into wide hydrogen‐bonded ribbons. The guest tetrapropylammonium cation changes its character to become the host molecule, generating pseudo‐channels containing the aforementioned ribbons by C—H...S contacts, yielding the three‐dimensional network structure. In comparison, in (2), the dithiobiurea anions are linked via N—H...S interactions, producing one‐dimensional chains which pack to generate two‐dimensional hydrogen‐bonded layers. These layers accommodate the guest tetrabutylammonium cations, resulting in a sandwich‐like layer structure with host–guest C—H...S contacts.  相似文献   

13.
The crystal structures of the proton‐transfer compounds of ferron (8‐hydroxy‐7‐iodoquinoline‐5‐sulfonic acid) with 4‐chloroaniline and 4‐bromoaniline, namely 4‐chloroanilinium 8‐hydroxy‐7‐iodoquinoline‐5‐sulfonate monohydrate, C6H7ClN+·C9H5INO4S·H2O, and 4‐bromoanilinium 8‐hydroxy‐7‐iodoquinoline‐5‐sulfonate monohydrate, C6H7BrN+·C9H5INO4S·H2O, have been determined. The compounds are isomorphous and comprise sheets of hydrogen‐bonded cations, anions and water molecules which are extended into a three‐dimensional framework structure through centrosymmetric R22(10) O—H...N hydrogen‐bonded ferron dimer interactions.  相似文献   

14.
A hydrogen‐bonded coordination supramol­ecule, (meso‐5,7,­7,­12,14,14‐hexa­methyl‐1,4,8,11‐tetra­aza­cyclo­tetra­decane‐κ4N)­nickel(II) [N,No‐phenylenebis­(oxamato)­‐κ4O,N,N′,O′]nickelate(II) dihydrate, [Ni(C16H36N4)][Ni(C10H4N2O6)]·2H2O or [Ni(meso‐cth)]­[Ni(opba)]·2H2O, has been prepared and characterized by X‐ray crystallographic analysis. The two complex ions, i.e. [Ni(meso‐cth)]2+ and [Ni(opba)]2?, are hydrogen bonded to each other, resulting in two‐dimensional neutral supramolecular sheets. The sheets stack along the a direction to produce a three‐dimensional architecture with one‐dimensional channels in which hydrogen‐bonded chains of water mol­ecules are included.  相似文献   

15.
In the title compound, oxonium 5‐amino‐2,6‐dioxo‐1,2,3,6‐tetra­hydro­pyrimidine‐4‐sulfonate hydrate, H3O+·­C4H4­N3­O5S?·­H2O, the sulfonate group is in the anionic form and charge balance is provided by an o­xonium cation, H3O+. Screw‐related mol­ecules overlap significantly and are hydrogen bonded to form a zigzag chain of the uracil skeleton along the direction of the c screw axis. The partially stacked bases and their glide‐related equivalents run parallel to the a axis to form hydro­phobic zones separated by hydro­philic zones built up by a network of hydrogen bonds.  相似文献   

16.
The dynamics of hydrogen bonding do not only play an important role in many biochemical processes but also in Nature's multicomponent machines. Here, a three-component nanorotor is presented where both the self-assembly and rotational dynamics are guided by hydrogen bonding. In the rate-limiting step of the rotational exchange, two phenolic O-H–N,N(phenanthroline) hydrogen bonds are cleaved, a process that was followed by variable-temperature 1H NMR spectroscopy. Activation data (ΔG298=46.7 kJ mol−1 at 298 K, ΔH=55.3 kJ mol−1, and ΔS=28.8 J mol−1 K−1) were determined, furnishing a rotational exchange frequency of k298=40.0 kHz. Fully reversible disassembly/assembly of the nanorotor was achieved by addition of 5.0 equivalents of trifluoroacetic acid (TFA)/1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) over three cycles.  相似文献   

17.
2‐[(2‐Ammonioethyl)amino]acetate dihydrate, better known as N‐(2‐aminoethyl)glycine dihydrate, C4H10N2O2·2H2O, (I), crystallizes as a three‐dimensional hydrogen‐bonded network. Amino acid molecules form layers in the ac plane separated by layers of water molecules, which form a hydrogen‐bonded two‐dimensional net composed of fused six‐membered rings having boat conformations. The crystal structure of the corresponding hydroiodide salt, namely 2‐[(2‐ammonioethyl)ammonio]acetate iodide, C4H11N2O2+·I, (II), has also been determined. The structure of (II) does not accommodate any solvent water molecules, and displays stacks of amino acid molecules parallel to the a axis, with iodide ions located in channels, resulting in an overall three‐dimensional hydrogen‐bonded network structure. N‐(2‐Aminoethyl)glycine is a molecule of considerable biological interest, since its polyamide derivative forms the backbone in the DNA mimic peptide nucleic acid (PNA).  相似文献   

18.
3‐(4‐carboxyphenyl)‐1‐methyltriazene N‐oxide reacts with KOH in methanol/pyridine to give {K[O2C‐C6H4‐N(H)NN(CH3)O]·4H2O}n, Potassium‐3‐(4‐carboxylatophenyl)‐1‐methyltriazene N‐oxide). The terminal carboxylato group of the anion does not interact with the cation. In the crystal lattice of {K(C8H8N3O3)·4H2O}n each three of the four water molecules interact with two potassium cations, every K+ ion being the centre of six bridging K···O interactions. Potassium cations interact further with the terminal N‐oxigen atom of single [C8H8N3O3]? anions achieving two parallel {C8H8N3O3?K+}n chains, which are linked through water molecules. The resulting polymeric, one‐dimensional chain, is operated by a screw axis 21 parallel to the crystallographic direction [010], along and equidistant to the K+ centres. The coordination of the K+ centres involves a distortion of the boat conformation of elementary sulfur (S8) with the ideal C2v symmetry.  相似文献   

19.
5‐Sulfosalicylic acid (5‐SSA) and 3‐aminopyridine (3‐APy) crystallize in the same solvent system, resulting in two kinds of 1:1 proton‐transfer organic adduct, namely 3‐aminopyridinium 3‐carboxy‐4‐hydroxybenzenesulfonate monohydrate, C5H7N2+·C7H5O6S·H2O or 3‐APy·5‐SSA·H2O, (I), and the anhydrous adduct, C5H7N2+·C7H5O6S or 3‐APy·5‐SSA, (II). Both compounds have extensively hydrogen‐bonded three‐dimensional layered polymer structures, with interlayer homo‐ and heterogeneous π–π interactions in (I) and (II), respectively.  相似文献   

20.
The synthesis and crystal structure determination (at 293 K) of the title complex, Cs[Fe(C8H6BrN3OS)2], are reported. The compound is composed of two dianionic O,N,S‐tridentate 5‐bromosalicylaldehyde thiosemicarbazonate(2−) ligands coordinated to an FeIII cation, displaying a distorted octahedral geometry. The ligands are orientated in two perpendicular planes, with the O‐ and S‐donor atoms in cis positions and the N‐donor atoms in trans positions. The complex displays intermolecular N—H...O and N—H...Br hydrogen bonds, creating R44(18) rings, which link the FeIII units in the a and b directions. The FeIII cation is in the low‐spin state at 293 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号