首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
Reported herein is a palladium‐catalyzed, directed γ‐C(sp3)?H arylation of protected thiols. The key is to utilize Michael acceptors as a dual reagent to install a protecting/directing group on thiols by a thiol‐Michael click reaction, and remove it later under basic conditions. The C?H arylation proceeds with high functional‐group tolerance and the deprotected thiols can be further transformed into other sulfur‐containing compounds. This unique mode of activation could open the door for site‐selective functionalization of thiols or other sulfur‐containing compounds at unactivated positions.  相似文献   

2.
A UV‐induced 1,3‐dipolar nucleophilic addition of tetrazoles to thiols is described. Under UV irradiation the reaction proceeds rapidly at room temperature, with high yields, without a catalyst, and in both polar protic and aprotic solvents, including water. This UV‐induced tetrazole‐thiol reaction was successfully applied for the synthesis of small molecules, protein modification, and rapid and facile polymer–polymer conjugation. The reaction has also been demonstrated for the formation of micropatterns by site‐selective surface functionalization. Superhydrophobic–hydrophilic micropatterns were successfully created by sequential modifications of a tetrazole‐modified porous polymer surface with hydrophobic and hydrophilic thiols. A biotin‐functionalized surface could be fabricated in aqueous solutions under long‐wavelength UV irradiation.  相似文献   

3.
Highly porous polymers produced by polymerization of the continuous phase of a high internal phase emulsion have been developed as scaffolds for 3D culture of human pluripotent stem cells. These emulsion‐templated polymerized high internal phase emulsion (polyHIPE) materials have an interconnected network of pores that provide support for the cells, while also allowing both cell ingress and nutrient diffusion. Thiol‐acrylate polyHIPE materials were prepared by photopolymerization, which, due to a competing acrylate homopolymerization process, leads to a material with residual surface thiols. These thiols were then used as a handle to allow postpolymerization functionalization with both maleimide and a maleimide‐derivatized cyclo‐RGDfK peptide, via Michael addition under benign conditions. Functionalization was evaluated using an Ellman's colorimetric assay, to monitor the residual thiol concentration, and X‐ray photoelectron spectroscopy. Maleimide was used as a model molecule to optimize conditions prior to peptide‐functionalization. The use of triethylamine as a catalyst and a mixed ethanol‐aqueous solvent system led to optimized reaction between surface‐bound thiols and maleimide. Peptide‐functionalized materials showed improved attachment and infiltration of human pluripotent stem cells over 7 days, demonstrating their promise as a scaffold for 3D stem cell culture and expansion. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1974–1981  相似文献   

4.
Two‐dimensional layered transition metal dichalcogenides (TMDs) have attracted great interest owing to their unique properties and a wide array of potential applications. However, due to their inert nature, pristine TMDs are very challenging to functionalize. We demonstrate a general route to functionalize exfoliated 2H‐MoS2 with cysteine. Critically, MoS2 was found to be facilitating the oxidation of the thiol cysteine to the disulfide cystine during functionalization. The resulting cystine was physisorbed on MoS2 rather than coordinated as a thiol (cysteine) filling S‐vacancies in the 2H‐MoS2 surface, as originally conceived. These observations were found to be true for other organic thiols and indeed other TMDs. Our findings suggest that functionalization of two‐dimensional MoS2 using organic thiols may not yield covalently or datively tethered functionalities, rather, in this instance, they yield physisorbed disulfides that are easily removed.  相似文献   

5.
End group activation of polymers prepared by reversible addition‐fragmentation chain transfer (RAFT) polymerization was accomplished by conversion of thiocarbonylthio end groups to thiols and subsequent reaction with excess of a bismaleimide. Poly(N‐isopropylacrylamide) (PNIPAM) was prepared by RAFT, and subsequent aminolysis led to sulfhydryl‐terminated polymers that reacted with an excess of 1,8‐bismaleimidodiethyleneglycol to yield maleimido‐terminated macromolecules. The maleimido end groups allowed near‐quantitative coupling with model low molecular weight thiols or dienes by Michael addition or Diels‐Alder reactions, respectively. Reaction of maleimide‐activated PNIPAM with another thiol‐terminated polymer proved an efficient means of preparing block copolymers by a modular coupling approach. Successful end group functionalization of the well‐defined polymers was confirmed by combination of UV–vis, FTIR, and NMR spectroscopy and gel permeation chromatography. The general strategy proved to be versatile for the preparation of functional telechelics and modular block copolymers from RAFT‐generated (co)polymers. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5093–5100, 2008  相似文献   

6.
An efficient method for the oxidative coupling of thiols to their corresponding disulfides by new reagents poly(N‐bromobenzene‐1,3‐disulfonylamide) PBBS , N,N,N′,N′‐tetrabromobenzene‐1,3‐disulfonylamide TBBDA and DABCO‐bromine complex is described. The reaction was applicable to a variety of thiols with high chemoselectivity.  相似文献   

7.
The use of a thio‐bromo click strategy as an efficient postpolymerization tool is described. Norbornene derivatives bearing an α‐bromo ester could be polymerized using Grubbs 2nd generation initiator to provide α‐bromo ester‐containing homo‐and block copolymers that could be efficiently functionalized through reactions with various thiols. A one‐pot strategy was also used, in which up to four different thiols were reacted simultaneously. This chemistry could also be used as an efficient cross‐linking strategy to form ROMP‐based gels as well as a tool for terminal functionalization of polypropylene‐based oligomers. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 179–185  相似文献   

8.
《化学:亚洲杂志》2017,12(24):3114-3118
A controllable method for the functionalization of XantPhos Pd‐G3 precatalyst with thiosugars and thiols has been established. Under mild and operationally simple reaction conditions through just mixing of precatalyst and thiosugars (α‐ or β‐mono‐, di‐ and poly‐thiosugar derivatives) in water at 25 °C for 20 min, a series of 1‐aminobiphenyl thioglycosides that are difficult to synthesize by classical methods has been synthesized in very high yields.  相似文献   

9.
Cleavage of unstrained C−C bonds under mild, redox‐neutral conditions represents a challenging endeavor which is accomplished here in the context of a flexible, visible‐light‐mediated, γ‐functionalization of amines. In situ generated C‐centered radicals are harvested in the presence of Michael acceptors, thiols and alkyl halides to efficiently form new C(sp3)−C(sp3), C(sp3)−H and C(sp3)−Br bonds, respectively.  相似文献   

10.
Cleavage of unstrained C−C bonds under mild, redox‐neutral conditions represents a challenging endeavor which is accomplished here in the context of a flexible, visible‐light‐mediated, γ‐functionalization of amines. In situ generated C‐centered radicals are harvested in the presence of Michael acceptors, thiols and alkyl halides to efficiently form new C(sp3)−C(sp3), C(sp3)−H and C(sp3)−Br bonds, respectively.  相似文献   

11.
A novel UV‐initiated surface modification method for the direct functionalization of surface hydroxy groups with thiol‐containing molecules (termed “thiol–ol” modification) is described. This method is based on the oxidative conjugation of thiols to hydroxy groups. We demonstrate that different thiol‐containing molecules, such as fluorophores, thiol‐terminated poly(ethylene glycol) (PEG‐SH), and a cysteine‐containing peptide, can be attached onto the surface of porous poly(2‐hydroxyethyl methacrylate‐co‐ethylene dimethacrylate). Direct functionalization of other hydroxy‐group‐bearing surfaces, fabrication of micropatterns, and double patterning have been also demonstrated using the thiol–ol method.  相似文献   

12.
Mild and general alumina‐promoted hydrolysis conditions for converting α‐iminonitriles into carboxamides have been developed. In combination with the oxidative three‐component Strecker reaction, the one‐pot direct amidation of aldehydes and alcohols is reported. Subsequently, an Yb(OTf)3‐catalyzed Michael addition of thiols to α,β‐unsaturated α‐iminonitriles is reported for the synthesis of β‐mercapto‐α‐iminonitriles. The successful integration of an oxidative Strecker reaction, thio‐Michael addition, and neutral‐alumina‐promoted hydrolysis of β‐mercapto‐α‐iminonitriles into a three‐component one‐pot process allowed us to develop the direct conversion of amines, aldehydes, and thiols into β‐mercaptoamides. All of these procedures were applicable to aromatic and aliphatic amines and aldehydes.  相似文献   

13.
《Electroanalysis》2003,15(9):779-785
We have investigated the electrocatalytic activity of cobalt tetra‐aminophthalocyanine (CoTAPc) for the one‐electron oxidation of thiols of various sizes, namely 2‐mercaptoethanol, 2‐mercaptoethanesulfonic acid, reduced glutathione and L ‐cysteine, using adsorbed monomeric CoTAPc and electropolymerized poly‐CoTAPc films of different thickness on a vitreous carbon electrode. Our results show that the electrocatalytic activity of poly‐CoTAPc films towards the oxidation of the thiols increases slightly with the thickness of the film, but remains similar to that of the adsorbed monomeric CoTAPc. The higher stability of the electropolymerized poly‐CoTAPc films makes them attractive for applications in the activation and/or the detection of thiols. We have assessed this approach by designing ultra‐micro‐carbon‐fiber electrodes, coated with poly‐CoTAPc, and combining their use with different electrochemical techniques (cyclic voltammetry, differential pulse voltammetry and differential normal pulse amperometry) for the electroanalysis of the examined thiols.  相似文献   

14.
In contrast to the continuously growing number of methods that allow for the efficient α‐functionalization of amines, few strategies exist that enable the direct functionalization of amines in the β‐position. A general redox‐neutral strategy is outlined for amine β‐functionalization and α,β‐difunctionalization that utilizes enamines generated in situ. This concept is demonstrated in the context of preparing polycyclic N,O‐acetals from simple 1‐(aminomethyl)‐β‐naphthols and 2‐(aminomethyl)‐phenols.  相似文献   

15.
We report the regioselective Cu‐free click modification of styrene functionalized DNA with nitrile oxides. A series of modified oligodeoxynucleotides (nine base pairs) was prepared with increasing styrene density. 1,3‐Dipolar cycloaddition with nitrile oxides allows the high density functionalization of the styrene modified DNA directly on the DNA solid support and in solution. This click reaction proceeds smoothly even directly in the DNA synthesizer and gives exclusively 3,5‐disubstituted isoxazolines. Additionally, PCR products (300 and 900 base pairs) were synthesized with a styrene triphosphate and KOD XL polymerase. The click reaction on the highly modified PCR fragments allows functionalization of hundreds of styrene units on these large DNA fragments simultaneously. Even sequential Cu‐free and Cu‐catalyzed click reaction of PCR amplicons containing styrene and alkyne carrying nucleobases was achieved. This new approach towards high‐density functionalization of DNA is simple, modular, and efficient.  相似文献   

16.
Boiling of the title compounds in ethereal solvents or cycloalkanes in the presence of a radical initiator leads to radical C(sp3)? H functionalization, by which a sulfur atom is introduced into the ethereal solvents at the oxygenated carbon atom or into the cycloalkanes. Both acyclic and cyclic ethers, such as [18]crown‐6 and [D8]THF, undergo the sulfur transfer. The reaction is useful for the synthesis of monothioacetals, thiols, and sulfides from simple starting materials.  相似文献   

17.
The chemoselectivity of two thiol‐based modular ligations operating under mild conditions is assessed. For this purpose, a macromolecular scaffold possessing allyl and pentafluorophenyl groups in two distinct parts is employed, which enables facile characterization by NMR spectroscopy (1H and 19F) and size‐exclusion chromatography. By using appropriate triggers (introduction of a base or light irradiation), it is possible to direct thiols to an arbitrarily chosen part of the scaffold, without any change to the other part and with no involvement of protecting group chemistry. Dual functionalization experiments are achieved by applying these triggers consecutively with no consideration of the reaction sequence order, evidencing full bidirectionality. A set of one‐pot, purification‐free procedures that enable near‐quantitative to full dual functionalization in (very) short reaction times (17–180 min) is also presented.  相似文献   

18.
Compared to the α‐functionalization of aldehydes, ketones, even esters, the direct α‐modification of amides is still a challenge because of the low acidity of α‐CH groups. The α‐functionalization of N−H (primary and secondary) amides, containing both an unactived α‐C−H bond and a competitively active N−H bond, remains elusive. Shown herein is the general and efficient oxidative α‐oxyamination and hydroxylation of aliphatic amides including secondary N−H amides. This transition‐metal‐free chemistry with high chemoselectivity provides an efficient approach to α‐hydroxy amides. This oxidative protocol significantly enables the selective functionalization of inert α‐C−H bonds with the complete preservation of active N−H bond.  相似文献   

19.
Nucleophile–nucleophile coupling is a challenging transformation in organic chemistry. Herein we present a novel umpolung strategy for α‐functionalization of aldehydes with nucleophiles. The strategy uses organocatalytic enamine activation and quinone‐promoted oxidation to access O‐bound quinol‐intermediates that undergo nucleophilic substitution reactions. These quinol‐intermediates react with different classes of nucleophiles. The focus is on an unprecedented organocatalytic oxidative α‐thiolation of aldehydes. The reaction scope is demonstrated for a broad range of thiols and extended to chemoselective bioconjugation, and applicable to a large variety of aldehydes. This strategy can also encompass organocatalytic enantioselective coupling of α‐branched aldehydes with thiols forming quaternary thioethers. Studies indicate a stereoselective formation of the intermediate followed by a stereospecific nucleophilic substitution reaction at a quaternary stereocenter, with inversion of configuration.  相似文献   

20.
The synthesis of densly functionized α‐silyl‐β‐hydroxyl vinylsilanes via ruthenium‐catalyzed multicomponent reaction (MCR) is reported herein. Exceptionally high regio‐ and diastereoselectivity was achieved by employing an unprecedented hydrosilylation of bifunctional silyl‐propargyl boronates. The simple protocol, mild reaction conditions, and unique tolerability of this method make it a valuable tool for the synthesis of highly elaborated building blocks. The one‐pot synthesis of stereodefined olefins, the generation of a valuable cyclohexene building block through a four‐component MCR, and further functionalization in an abundance of diastereoselective reactions is disclosed herein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号