首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Saxitoxin (STX) and its analogues are potent voltage‐gated sodium channel blockers biosynthesized by freshwater cyanobacteria and marine dinoflagellates. We previously identified genetically predicted biosynthetic intermediates of STX at early stages, Int‐A′ and Int‐C′2, in these microorganisms. However, the mechanism to form the tricyclic skeleton of STX was unknown. To solve this problem, we screened for unidentified intermediates by analyzing the results from previous incorporation experiments with 15N‐labeled Int‐C′2. The presence of monohydroxy‐Int‐C′2 and possibly Int‐E′ was suggested, and 11‐hydroxy‐Int‐C′2 and Int‐E′ were identified from synthesized standards and LC‐MS. Furthermore, we observed that the hydroxy group at C11 of 11‐hydroxy‐Int‐C′2 was slowly replaced by CD3O in CD3OD. Based on this characteristic reactivity, we propose a possible mechanism to form the tricyclic skeleton of STX via a bicyclic intermediate from 11‐hydroxy‐Int‐C′2.  相似文献   

2.
Presented here is a concise synthesis of secu′amamine A, and fluvirosaones A and B from readily available allosecurinine and viroallosecurinine. The key C2‐enamine derivative of (viro)allosecurinine, the presumed biosynthetic precursors of these natural products, was accessed, for the first time, by a VO(acac)2‐mediated regioselective Polonovski reaction. Formal hydration and 1,2‐amine shift of this pluripotent enamine compound afforded secu′amamine A. Formal oxidative [3+2] cycloaddition reaction between this enamine and TMS‐substituted methallyl iodide reagent paved the way to the precursors of fluvirosaones A and B. The relative stereochemistry at the C2 position of these advanced intermediates governs the fate of 1,2‐amine shift leading to fluvirosaones A and B. The syntheses of potential biosynthetic precursors and investigations of their chemical reactivities have provided insights regarding the biogenesis of these natural products.  相似文献   

3.
A collaborative study was conducted on a microplate format receptor binding assay (RBA) for paralytic e shellfish toxins (PST). The assay quantifies the composite PST toxicity in shellfish samples based on the ability of sample extracts to compete with (3)H saxitoxin (STX) diHCl for binding to voltage-gated sodium channels in a rat brain membrane preparation. Quantification of binding can be carried out using either a microplate or traditional scintillation counter; both end points were included in this study. Nine laboratories from six countries completed the study. One laboratory analyzed the samples using the precolumn oxidation HPLC method (AOAC Method 2005.06) to determine the STX congener composition. Three laboratories performed the mouse bioassay (AOAC Method 959.08). The study focused on the ability of the assay to measure the PST toxicity of samples below, near, or slightly above the regulatory limit of 800 (microg STX diHCl equiv./kg). A total of 21 shellfish homogenates were extracted in 0.1 M HCl, and the extracts were analyzed by RBA in three assays on separate days. Samples included naturally contaminated shellfish samples of different species collected from several geographic regions, which contained varying STX congener profiles due to their exposure to different PST-producing dinoflagellate species or differences in toxin metabolism: blue mussel (Mytilus edulis) from the U.S. east and west coasts, California mussel (Mytilus californianus) from the U.S. west coast, chorito mussel (Mytilus chiliensis) from Chile, green mussel (Perna canaliculus) from New Zealand, Atlantic surf clam (Spisula solidissima) from the U.S. east coast, butter clam (Saxidomus gigantea) from the west coast of the United States, almeja clam (Venus antiqua) from Chile, and Atlantic sea scallop (Plactopecten magellanicus) from the U.S. east coast. All samples were provided as whole animal homogenates, except Atlantic sea scallop and green mussel, from which only the hepatopancreas was homogenized. Among the naturally contaminated samples, five were blind duplicates used for calculation of RSDr. The interlaboratory RSDR of the assay for 21 samples tested in nine laboratories was 33.1%, yielding a HorRat value of 2.0. Removal of results for one laboratory that reported systematically low values resulted in an average RSDR of 28.7% and average HorRat value of 1.8. Intralaboratory RSDr based on five blind duplicate samples tested in separate assays, was 25.1%. RSDr obtained by individual laboratories ranged from 11.8 to 34.9%. Laboratories that are routine users of the assay performed better than nonroutine users, with an average RSDr of 17.1%. Recovery of STX from spiked shellfish homogenates was 88.1-93.3%. Correlation with the mouse bioassay yielded a slope of 1.64 and correlation coefficient (r(2)) of 0.84, while correlation with the precolumn oxidation HPLC method yielded a slope of 1.20 and an r(2) of 0.92. When samples were sorted according to increasing toxin concentration (microg STX diHCl equiv./kg) as assessed by the mouse bioassay, the RBA returned no false negatives relative to the 800 microg STX diHCl equiv./kg regulatory limit for shellfish. Currently, no validated methods other than the mouse bioassay directly measure a composite toxic potency for PST in shellfish. The results of this interlaboratory study demonstrate that the RBA is suitable for the routine determination of PST in shellfish in appropriately equipped laboratories.  相似文献   

4.
Rings or arcs of fungus‐stimulated plant growth occur worldwide; these are commonly referred to as “fairy rings”. In 2010, we discovered 2‐azahypoxanthine (AHX), a compound responsible for the fairy‐ring phenomenon caused by fungus; AHX stimulated the growth of all the plants tested. Herein, we reveal the isolation and structure determination of a common metabolite of AHX in plants, 2‐aza‐8‐oxohypoxanthine (AOH). AHX is chemically synthesized from 5‐aminoimidazole‐4‐carboxamide (AICA), and AHX can be converted into AOH by xanthine oxidase. AICA is one of the members of the purine metabolic pathway in animals, plants, and microorganisms. However, further metabolism of AICA remains elusive. Based on these results and facts, we hypothesized that plants themselves produce AHX and AOH through a pathway similar to the chemical synthesis. Herein, we demonstrate the existence of endogenous AHX and AOH and a novel purine pathway to produce them in plants.  相似文献   

5.
A rapid liquid chromatographic (LC) method with postcolumn oxidation and fluorescence detection (excitation 330 nm, emission 390 nm) for the determination of paralytic shellfish toxins (PSTs) in shellfish tissue has been developed. Extracts prepared for mouse bioassay (MBA) were treated with trichloroacetic acid to precipitate protein, centrifuged, and pH-adjusted for LC analysis. Saxitoxin (STX), neoSTX (NEO), decarbamoylSTX (dcSTX), and the gonyautoxins, GTX1, GTX2, GTX3, GTX4, GTX5, dcGTX2, and dcGTX3, were separated on a polar-linked alkyl reversed-phase column using a step gradient elution; the N-sulfocarbamoyl GTXs, C1, C2, C3, and C4, were determined on a C-8 reversed-phase column in the isocratic mode. Relative toxicities were used to determine STX-dihydrochloride salt (diHCl) equivalents (STXeq). Calibration graphs were linear for all toxins studied with STX showing a correlation coefficient of 0.999 and linearity between 0.18 and 5.9 ng STX-diHCI injected (equivalent to 3.9-128 microg STXeq/100 g in tissue). Detection limits for individual toxins ranged from 0.07 microg STXeq/100 g for C1 and C3 to 4.1 microg STXeq/100 g for GTX1. Spike recoveries ranged from 76 to 112% in mussel tissue. The relative standard deviation (RSD) of repeated injections of GTX and STX working standard solutions was < 4%. Uncertainty of measurement at a level of 195 microg STXeq/100 g was 9%, and within-laboratory reproducibility expressed as RSD was 4.6% using the same material. Repeatability of a 65 microg STXeq/100 g sample was 3.0% RSD. Seventy-three samples were analyzed by the new postcolumn method and both AOAC Official Methods for PST determination: the MBA (y = 1.22x + 13.99, r2 = 0.86) and the precolumn LC oxidation method of Lawrence (y = 2.06x + 12.21, r2 = 0.82).  相似文献   

6.
C3′‐deoxygenation of aminoglycosides results in their decreased susceptibility to phosphorylation thereby increasing their efficacy as antibiotics. However, the biosynthetic mechanism of C3′‐deoxygenation is unknown. To address this issue, aprD4 and aprD3 genes from the apramycin gene cluster in Streptomyces tenebrarius were expressed in E. coli and the resulting gene products were characterized in vitro. AprD4 is shown to be a radical S‐adenosylmethionine (SAM) enzyme, catalyzing homolysis of SAM to 5′‐deoxyadenosine (5′‐dAdo) in the presence of paromamine. [4′‐2H]‐Paromamine was prepared and used to show that its C4′‐H is transferred to 5′‐dAdo by AprD4, during which the substrate is dehydrated to a product consistent with 4′‐oxolividamine. In contrast, paromamine is reduced to a deoxy product when incubated with AprD4/AprD3/NADPH. These results show that AprD4 is the first radical SAM diol‐dehydratase and, along with AprD3, is responsible for 3′‐deoxygenation in aminoglycoside biosynthesis.  相似文献   

7.
A simple environmentally friendly solid‐phase microwave‐assisted method was used to synthesis of the 1,3′‐diazaflavanone ( 2 ) and 1,3′‐diazaflavone ( 3 ) from the cyclization of 2′‐amino (E)‐3″‐azachalcone ( 1 ). Ten new N‐alkyl (C5–12,14,15)‐substituted 1,3′‐diazaflavanonium bromides ( 2a–j ) were prepared from compound 2 with corresponding alkyl halides in acetonitrile under reflux. In addition, nine new N,N′‐dialkyl (C5–12,14)‐substituted 1,3′‐diazaflavonium bromides ( 3a–i ) were also synthesized from compound 3 with corresponding alkyl halides using basic silica in acetonitrile. The antimicrobial activities of compounds 1–3 , 2a–j , and 3a–i were tested against Gram‐positive (G+) (Bacillus subtilis, Staphylococcus epidermidis, Staphylococcus aureus, and Enterococcus faecalis) and Gram‐negative (G?) (Escherichia coli, Klebsiella pneumonia, Pseudomonas aeruginosa, Proteus vulgaris, Salmonella typhimirium, Yersinia pseudotuberculosis, and Enterobacter cloaceae) microorganisms. They showed good antimicrobial activity against the Gram‐positive bacteria tested with the minimal inhibitory concentration values less than 7.8 μg/mL in most cases. The optimum length of the alkyl chain for better and broader activity is situated in the range of 9–12 carbon atoms in the series of compounds 2a–j and five to six carbon atoms in the series of compounds 3a–i . The nonalkylated compounds 1–3 were not effective, as were the ones alkylated with five or six C alkyl groups ( 2a and 2b ) and 8–13 C alkyl groups for N,N′‐dialkyl compounds ( 3c–3i ). The antimicrobial activity increased as the length of the alkyl substitution increased from 8 to 12 carbons in compounds 2a–j . However, antimicrobial activity decreased as the length of the alkyl substitution increased from 7 to 13 carbons in compounds 3c–i . J. Heterocyclic Chem., (2012)  相似文献   

8.
While halogenated nucleosides are used as common anticancer and antiviral drugs, naturally occurring halogenated nucleosides are rare. Adechlorin (ade) is a 2′‐chloro nucleoside natural product first identified from Actinomadura sp. ATCC 39365. However, the installation of chlorine in the ade biosynthetic pathway remains elusive. Reported herein is a Fe2+‐α‐ketoglutarate halogenase AdeV that can install a chlorine atom at the C2′ position of 2′‐deoxyadenosine monophosphate to afford 2′‐chloro‐2′‐deoxyadenosine monophosphate. Furthermore, 2′,3′‐dideoxyadenosine‐5′‐monophosphate and 2′‐deoxyinosine‐5′‐monophosphate can also be converted, albeit 20‐fold and 2‐fold, respectively, less efficiently relative to the conversion of 2′‐deoxyadenosine monophosphate. AdeV represents the first example of a Fe2+‐α‐ketoglutarate‐dependent halogenase that converts nucleotides into chlorinated analogues.  相似文献   

9.
The kinetics of the oxidation of 4‐isopropylbiphenyl ( 1 ) in the liquid phase by oxygen to 1‐(1,1′‐biphenyl‐4‐yl)‐1‐methylethyl hydroperoxide ( 2 ) was investigated. The oxidizability of 1 in the temperature range from 60°C to 120°C and the overall energy activation of oxidation were determined. Long‐term oxidation of 1 to 2 in the temperature range of 80–120°C was investigated, and the yield and selectivity of the process were determined. Pure 2 was obtained, and its properties were defined. 4‐Hydroxybiphenyl was obtained as a result of the acidic decomposition of 2 . © 2008 Wiley Periodicals, Inc. Int J Chem Kinet 40: 527–532, 2008  相似文献   

10.
A series of C2-symmetrical chiral 2,5-bis (4′-alkyloxazolin-2-yl) thiophenes (thiobox) have been synthesized from thiophene-2,5-dicarboxylic acid by sequential amidation with a chiral ethanolamine,conversion of hydroxyl to chloro group, and base-promoted oxazoline ring formation.As demonstrated by (-)-2,5-bis[4′-(S)-isopropyloxazolin-2′-yl] thiophene,these thiobox systems exhibited remarkable chirality recognition of 1,1′-bi-2-naphthol giving rise to pronounced shifts in the ^1H NMR signals of the latter axial chiral compound at the positions of C-3,C-4,C-5,and C-8.  相似文献   

11.
Presented here is a concise synthesis of secu′amamine A, and fluvirosaones A and B from readily available allosecurinine and viroallosecurinine. The key C2-enamine derivative of (viro)allosecurinine, the presumed biosynthetic precursors of these natural products, was accessed, for the first time, by a VO(acac)2-mediated regioselective Polonovski reaction. Formal hydration and 1,2-amine shift of this pluripotent enamine compound afforded secu′amamine A. Formal oxidative [3+2] cycloaddition reaction between this enamine and TMS-substituted methallyl iodide reagent paved the way to the precursors of fluvirosaones A and B. The relative stereochemistry at the C2 position of these advanced intermediates governs the fate of 1,2-amine shift leading to fluvirosaones A and B. The syntheses of potential biosynthetic precursors and investigations of their chemical reactivities have provided insights regarding the biogenesis of these natural products.  相似文献   

12.
The pyrimidine ring of the title compound, C11H16N2O5S·H2O, is planar to within 0.026 (1) Å and makes an angle of 77.73 (8)° with the mean plane of the thiosugar ring. In terms of standard nucleoside nomenclature, this ring has a C1′‐exo,C2′‐endo conformation. The O5′—C5′—C4′—C3′ torsion angle is ?167.4 (2)° and the glycosidic S4′—C1′—N1—C2 torsion angle is ?101.8 (2)° (anti).  相似文献   

13.
The antioxidant activity of two primary antioxidants, 2,2′‐methylenebis(4‐methyl‐6‐tert ‐butylphenol) (MMBPH2) and 2,2′‐methylenebis(4,6‐di‐tert ‐butylphenol) (MDBPH2), has been studied using the 1,1‐diphenyl‐2‐picrylhydrazyl (DPPH) method. The synthesized compounds have been successfully characterized systematically using elemental analyses, infrared, 1H NMR and 13C NMR spectra and GC–MS. Importantly, it has been found that the compound MMBPH2 in particular is more active in DPPH radical scavenging. In addition, density functional theory calculations (B3LYP) have been used to predict the antioxidant activity and predict structural geometries of the compounds in the gas phase.  相似文献   

14.
A preparation of (1′R,2′S,3′R,4′S)‐1‐(2′,3′,4′‐trihydroxycyclopent‐1′‐yl)‐lH‐cytosine (5′‐norcarbodine, 3 ) has formally been achieved in 2 steps from (+)‐(1R,4S)‐4‐hydroxy‐2‐cyclopenten‐1‐yl acetate ( 4 ) and cytosine. The L‐like enantiomer of 3 (that is, 6 ) is also reported using the enantiomer of 4 (that is, 7 ). In evalu ating 3 and 6 for antiviral potential against a number of viruses, compound 3 was found to have activity towards Epstein‐Barr virus (EBV).  相似文献   

15.
2-(2'-Oxo-3'-oximidocyclododecyl) cyclododecanone (1) and 2-(1'-hydroxylcyclododecyl) cyclododecanone (2) were synthesized and characterized. The conformation analysis was carried out based on the NMR, molecular mechanics calculation and X-ray diffraction. The conformation of two cyclododecyl moieties of both 1 and 2 was found to be the [3333]-2-one or [3333] square conformation both in the crystal state and the solution. The dihedral angle between carbonyl and the oxime double bond of the ring B is 180°in the crystal of 1. The protons or hydroxyl group of carbon atoms to link the two cyclododecyl moieties of 1 and 2 constitute dihedral angles of 174°in the crystal, and 175°in the solution, and the C-C 6 bond between two cyclododecyl moieties can not freely rotate in the solid state and the solution. In addition, compound 2 was the first example of a-comer-anti-monosubstituted cyclododecanone. synthesis  相似文献   

16.
A series of 7‐fluorinated 7‐deazapurine 2′‐deoxyribonucleosides related to 2′‐deoxyadenosine, 2′‐deoxyxanthosine, and 2′‐deoxyisoguanosine as well as intermediates 4b – 7b, 8, 9b, 10b , and 17b were synthesized. The 7‐fluoro substituent was introduced in 2,6‐dichloro‐7‐deaza‐9H‐purine ( 11a ) with Selectfluor (Scheme 1). Apart from 2,6‐dichloro‐7‐fluoro‐7‐deaza‐9H‐purine ( 11b ), the 7‐chloro compound 11c was formed as by‐product. The mixture 11b / 11c was used for the glycosylation reaction; the separation of the 7‐fluoro from the 7‐chloro compound was performed on the level of the unprotected nucleosides. Other halogen substituents were introduced with N‐halogenosuccinimides ( 11a → 11c – 11e ). Nucleobase‐anion glycosylation afforded the nucleoside intermediates 13a – 13e (Scheme 2). The 7‐fluoro‐ and the 7‐chloro‐7‐deaza‐2′‐deoxyxanthosines, 5b and 5c , respectively, were obtained from the corresponding MeO compounds 17b and 17c , or 18 (Scheme 6). The 2′‐deoxyisoguanosine derivative 4b was prepared from 2‐chloro‐7‐fluoro‐7‐deaza‐2′‐deoxyadenosine 6b via a photochemically induced nucleophilic displacement reaction (Scheme 5). The pKa values of the halogenated nucleosides were determined (Table 3). 13C‐NMR Chemical‐shift dependencies of C(7), C(5), and C(8) were related to the electronegativity of the 7‐halogen substituents (Fig. 3). In aqueous solution, 7‐halogenated 2′‐deoxyribonucleosides show an approximately 70% S population (Fig. 2 and Table 1).  相似文献   

17.
3,3′,4,4′‐benzophenonetetracarboxylic dianhydride (4,4′‐carbonyldiphathalic anhydride) was reacted with L ‐leucine in a mixture of acetic acid and pyridine (3 : 2), and the resulting imide‐acid [N,N′‐(4,4′‐carbonyldiphthaloyl)‐bis‐L ‐leucine diacid] was obtained in quantitative yield. The compound was converted to the N,N′‐(4,4′‐carbonyldiphthaloyl)‐bis‐L ‐leucine diacid chloride by reaction with thionyl chloride. A new facile and rapid polycondensation reaction of this diacid chloride with several aromatic diamines such as 4,4′‐diaminodiphenyl methane, 2,4‐diaminotoluene, 4,4′‐sulfonyldianiline, p‐phenylenedi‐amine, 4,4′‐diaminodiphenylether, and m‐phenylenediamine was developed by using a domestic microwave oven in the presence of a small amount of a polar organic medium such as O‐cresol. The polymerization reactions proceeded rapidly compared with the conventional solution polycondensation and were completed within 6 min, producing a series of optically active poly(amide‐imide)s with a high yield and an inherent viscosity of 0.37–0.57 dL/g. All of the above polymers were fully characterized by IR, elemental analyses, and specific rotation. Some structural characterization and physical properties of these optically active poly(amide‐imide)s are reported. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 177–186, 2001  相似文献   

18.
The title compound, 2,4‐diamino‐5‐bromo‐7‐(2‐deoxy‐2‐fluoro‐β‐d ‐arabinofuranosyl)‐7H‐pyrrolo[2,3‐d]pyrimidine, C11H13BrFN5O3, shows two conformations of the exocyclic C4′—C5′ bond, with the torsion angle γ (O5′—C5′—C4′—C3′) being 170.1 (3)° for conformer 1 (occupancy 0.69) and 60.7 (7)° for conformer 2 (occupancy 0.31). The N‐glycosylic bond exhibits an anti conformation, with χ = −114.8 (4)°. The sugar pucker is N‐type (C3′‐endo; 3T4), with P = 23.3 (4)° and τm = 36.5 (2)°. The compound forms a three‐dimensional network that is stabilized by several intermolecular hydrogen bonds (N—H...O, O—H...N and N—H...Br).  相似文献   

19.
The reaction of the bisboracumulene (CAAC)2B2 (CAAC=1‐(2,6‐diisopropylphenyl)‐3,3,5,5‐tetramethylpyrrolidin‐2‐ylidene) with excess tert‐butylisocyanide resulted in complexation of the isocyanide at boron. Though this compound might be formally drawn with a lone pair on boron, these electrons are highly delocalized throughout a conjugated π‐network consisting of the π‐acidic CAAC and isocyanide ligands. Heating this compound to 110 °C liberated the organic periphery of both isocyanide ligands, yielding the first example of a dicyanodiborene. Cyclic voltammetry conducted on this diborene indicated the presence of reduction waves, making this compound unique among diborenes, which are otherwise highly reducing.  相似文献   

20.
《Electrophoresis》2017,38(3-4):469-476
As one of paralytic shellfish toxins, the saxitoxin (STX) in the aqueous environment can be accumulated by most shellfish, and thus harms human health through the food chain. Therefore, it is crucial to determine trace STX in seafood samples in order to ensure the safety of seafood consumption. In this study, we developed a novel indirect method for ultrasensitively determining trace STX in seafood by using CE‐ICP‐MS together with Eu3+ chelate labeling. We demonstrated that diethylenetriamine‐N ,N ,N ′,N ″,N ″‐pentaacetic acid (DTPA) can couple with STX and simultaneously chelate with Eu3+ to realize metallic labeling of STX, and thus realize the ultrasensitive quantification of trace STX with CE‐ICP‐MS. The proposed method has strong antiinterference ability, good stability, and extremely high sensitivity. It could be used to determine trace STX in seafood samples with an extremely low detection limit of 0.38 fmol (3.8×10−9 M, 100 nL sample injection) and a relative standard deviation (RSD, n = 5) <7%. The success of this study provides an alternative to precise quantification of ultra‐trace STX in seafood samples, and further expands the application of ICP‐MS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号