首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 423 毫秒
1.
A divanadium‐substituted phosphotungstate, [γ‐PW10O38V2(μ‐OH)2]3? ( I ), showed the highest catalytic activity for the H2O2‐based epoxidation of allyl acetate among vanadium and tungsten complexes with a turnover number of 210. In the presence of I , various kinds of electron‐deficient alkenes with acetate, ether, carbonyl, and chloro groups at the allylic positions could chemoselectively be oxidized to the corresponding epoxides in high yields with only an equimolar amount of H2O2 with respect to the substrates. Even acrylonitrile and methacrylonitrile could be epoxidized without formation of the corresponding amides. In addition, I could rapidly (≤10 min) catalyze epoxidation of various kinds of terminal, internal, and cyclic alkenes with H2O2 under the stoichiometric conditions. The mechanistic, spectroscopic, and kinetic studies showed that the I ‐catalyzed epoxidation consists of the following three steps: 1) The reaction of I with H2O2 leads to reversible formation of a hydroperoxo species [γ‐PW10O38V2(μ‐OH)(μ‐OOH)]3? ( II ), 2) the successive dehydration of II forms an active oxygen species with a peroxo group [γ‐PW10O38V2(μ‐η22‐O2)]3? ( III ), and 3) III reacts with alkene to form the corresponding epoxide. The kinetic studies showed that the present epoxidation proceeds via III . Catalytic activities of divanadium‐substituted polyoxotungstates for epoxidation with H2O2 were dependent on the different kinds of the heteroatoms (i.e., Si or P) in the catalyst and I was more active than [γ‐SiW10O38V2(μ‐OH)2]4?. On the basis of the kinetic, spectroscopic, and computational results, including those of [γ‐SiW10O38V2(μ‐OH)2]4?, the acidity of the hydroperoxo species in II would play an important role in the dehydration reactivity (i.e., k3). The largest k3 value of I leads to a significant increase in the catalytic activity of I under the more concentrated conditions.  相似文献   

2.
The novel, dimeric titanium(IV )‐substituted phosphotungstate [(TiP2W15O55OH)2]14? ( 1 ) has been synthesized and characterized by IR and 31P NMR spectroscopy, elemental analysis, and single‐crystal Xray diffraction. The polyanion consists of two [P2W15O56]12? Wells–Dawson moieties linked through two titanium(IV ) centers. Polyanion 1 is a dilacunary species and represents the first Ti‐containing sandwich‐type structure. The titanium centers are octahedrally coordinated by three oxygen atoms of each P2W15O56 subunit. The edge‐shared TiO6 units are symmetrically equivalent and have no terminal ligands. Polyanion 1 shows a chiral distortion within each P2W15Ti fragment. We also report on the structural characterization of the tetrameric, supramolecular species [{Ti3P2W15O57.5(OH)3}4]24? ( 2 ). Polyanion 2 is composed of four equivalent P2W15Ti3 fragments, fused together through terminal Ti? O bonds, leading to a structure with Td symmetry.  相似文献   

3.
A mononuclear‐cobalt(II)‐substituted silicotungstate, K10[Co(H2O)2(γ‐SiW10O35)2] ? 23 H2O (POM‐ 1 ), has been evaluated as a light‐driven water‐oxidation catalyst. With in situ photogenerated [Ru(bpy)3]3+ (bpy=2,2′‐bipyridine) as the oxidant, quite high catalytic turnover number (TON; 313), turnover frequency (TOF; 3.2 s?1), and quantum yield (ΦQY; 27 %) for oxygen evolution at pH 9.0 were acquired. Comparison experiments with its structural analogues, namely [Ni(H2O)2(γ‐SiW10O35)2]10? (POM‐ 2 ) and [Mn(H2O)2(γ‐SiW10O35)2]10? (POM‐ 3 ), gave the conclusion that the cobalt center in POM‐ 1 is the active site. The hydrolytic stability of the title polyoxometalate (POM) was confirmed by extensive experiments, including UV/Vis spectroscopy, linear sweep voltammetry (LSV), and cathodic adsorption stripping analysis (CASA). As the [Ru(bpy)3]2+/visible light/sodium persulfate system was introduced, a POM–photosensitizer complex formed within minutes before visible‐light irradiation. It was demonstrated that this complex functioned as the active species, which remained intact after the oxygen‐evolution reaction. Multiple experimental parameters were investigated and the catalytic activity was also compared with the well‐studied POM‐based water‐oxidation catalysts (i.e., [Co4(H2O)2(α‐PW9O34)2]10? (Co4‐POM) and [CoIIICoII(H2O)W11O39]7? (Co2‐POM)) under optimum conditions.  相似文献   

4.
The disassembly and reassembly of giant molecules are essential processes in controlling the structure and function of biological and artificial systems. In this work, the disassembly and reassembly of a giant ring‐shaped polyoxometalate (POM) without isomerization of the monomeric units is reported. The reaction of a hexavacant lacunary POM that is soluble in organic solvents, [P2W12O48]14?, with manganese cations gave the giant ring‐shaped POM [{γ‐P2W12O48Mn4(C5H7O2)2(CH3CO2)}6]42?. This POM is a hexamer of manganese‐substituted {P2W12O48Mn4} units, and its inner cavity was larger than any of those previously reported for ring‐shaped polyoxotungstates. It was disassembled into monomeric units in acetonitrile, and the removal of the capping organic ligands on the manganese cations led to reassembly into a tetrameric ring‐shaped POM, [{γ‐P2W12O48Mn4(H2O)6}4(H2O)4]24?.  相似文献   

5.
Al‐ and Ga‐containing open‐Dawson polyoxometalates (POMs), K10[{Al4(μ‐OH)6}{α,α‐Si2W18O66}] · 28.5H2O ( Al4 ‐ open ) and K10[{Ga4(μ‐OH)6}(α,α‐Si2W18O66)] · 25H2O ( Ga4 ‐ open ) were synthesized by the reaction of trilacunary Keggin POM, [A‐α‐SiW9O34]10–, with Al(NO3)3 · 9H2O or Ga(NO3)3 · nH2O, and unequivocally characterized by single‐crystal X‐ray analysis, 29Si and 183W NMR, and FT‐IR spectroscopy as well as elemental analysis and TG/DTA. Single‐crystal X‐ray analysis revealed that the {M4(μ‐OH)6}6+ (M = Al, Ga) clusters were included in an open pocket of the open‐Dawson polyanion, [α,α‐Si2W18O66]16–, which was constituted by the fusion of two trilacunary Keggin POMs via two W–O–W bonds. These two open‐Dawson structural POMs showed clear difference of the bite angles depending on the size of ionic radii. In cases of both compounds, the solution 29Si and 183W NMR spectra in D2O showed only one signal and five signals, respectively. These spectra were consistent with the molecular structures of Al4 ‐ and Ga4 ‐ open , suggesting that these polyoxoanions were obtained as single species and maintained their molecular structures in solution.  相似文献   

6.
An attempt has been made to design double‐stranded ladder‐like coordination polymers (CPs) of hemidirected PbII. Four CPs, [Pb(μ‐bpe)(O2C‐C6H5)2] ? 2H2O ( 1 ), [Pb2(μ‐bpe)2(μ‐O2C‐C6H5)2(O2C‐C6H5)2] ( 2 ), [Pb2(μ‐bpe)2(μ‐O2C‐p‐Tol)2(O2C‐p‐Tol)2] ? 1.5 H2O ( 3 ) and [Pb2(μ‐bpe)2(μ‐O2C‐m‐Tol)2(O2C‐m‐Tol)2] ( 4 ) (bpe=1,2‐bis(4′‐pyridyl)ethylene), have been synthesised and investigated for their solid‐state photoreactivity. CPs 2 – 4 , having a parallel orientation of bpe molecules in their ladder structures and being bridged by carboxylates, were found to be photoreactive, whereas CP 1 is a linear one‐dimensional (1D) CP with guest water molecules aggregating to form a hydrogen‐bonded 1D structure. The linear strands of 1 were found to pair up upon eliminating lattice water molecules by heating, which led to the solid‐state structural transformation of photostable linear 1D CP 1 into photoreactive ladder CP 2 . In the construction of the double‐stranded ladder‐like structures, the parallel alignment of C?C bonds in 2 – 4 is dictated by the chelating and μ2‐η21 bridging modes of the benzoate and toluate ligands. The role of solvents in the formation of such double‐stranded ladder‐like structures has also been investigated. A single‐crystal‐to‐single‐crystal transformation occurred when 4 was irradiated under UV light to form [Pb2(rctt‐tpcb)(μ‐O2C‐m‐Tol)2(O2C‐m‐Tol)2] ( 5 ).  相似文献   

7.
Two unique organic–inorganic hybrid polyoxometalates constructed from Preyssler‐type [Na(H2O)P5W30O110]14? ({P5W30}) subunits and TM/Ln–carboxylate–Ln connectors (TM=transition metal, Ln=lanthanide), KNa7[{Sm6Mn(μ‐H2O)2(OCH2COO)7(H2O)18}{Na(H2O)P5W30O110}] ? 22 H2O ( 1 ) and K4[{Sm4Cu2(gly)2(ox)(H2O)24}{NaP5W30O110}]Cl2 ? 25 H2O ( 2 ; gly=glycine, ox=oxalate) have been hydrothermally synthesized and characterized by elemental analyses, IR spectra, UV/Vis‐NIR spectra, thermogravimetric analyses, power X‐ray diffraction, and single‐crystal X‐ray diffraction. Compound 1 displays one interesting 3D framework built by three types of subunits, {P5W30}, [Sm2Mn(μ‐H2O)2(OCH2COO)2(H2O)5]4+, and [Sm4(OCH2COO)5 (H2O)13]2+, whereas 2 also manifests the other intriguing 3D architecture created by three types of subunits, {P5W30}, [SmCu(gly)(H2O)8]4+, and [Sm2(ox)(H2O)8]4+. To our knowledge, 1 and 2 are the first 3D frameworks that contain {P5W30} units and TM/Ln–carboxylate–Ln connectors. The fluorescent properties of 1 and 2 have been investigated.  相似文献   

8.
[Ho5(H2O)16(OH)2As6W64O220]25?, a Large Novel Polyoxoanion from Trivacant Keggin Fragments The novel polyoxotungstate Na7K18[Ho5(H2O)16(OH)2As6W64O220] · 56 H2O ( 1 ) was synthesized in aqueous solution and characterized by X‐ray structure analysis, elemental analysis and IR spectroscopy. The anion in 1 represents one of the largest polyoxoanions known yet and exhibits an unusual arrangement of six Keggin units. It consists of six trivacant lacunary α‐B‐(AsW9O33)9? Keggin fragments which are connected by a bridging [Ho5W10(H2O)16(OH)2O22]29+ unit. The five HoIII atoms are coordinated by eight oxygen atoms, forming a square‐antiprism.  相似文献   

9.
A combined experimental and quantum chemical study of Group 7 borane, trimetallic triply bridged borylene and boride complexes has been undertaken. Treatment of [{Cp*CoCl}2] (Cp*=1,2,3,4,5‐pentamethylcyclopentadienyl) with LiBH4 ? thf at ?78 °C, followed by room‐temperature reaction with three equivalents of [Mn2(CO)10] yielded a manganese hexahydridodiborate compound [{(OC)4Mn}(η6‐B2H6){Mn(CO)3}2(μ‐H)] ( 1 ) and a triply bridged borylene complex [(μ3‐BH)(Cp*Co)2(μ‐CO)(μ‐H)2MnH(CO)3] ( 2 ). In a similar fashion, [Re2(CO)10] generated [(μ3‐BH)(Cp*Co)2(μ‐CO)(μ‐H)2ReH(CO)3] ( 3 ) and [(μ3‐BH)(Cp*Co)2(μ‐CO)2(μ‐H)Co(CO)3] ( 4 ) in modest yields. In contrast, [Ru3(CO)12] under similar reaction conditions yielded a heterometallic semi‐interstitial boride cluster [(Cp*Co)(μ‐H)3Ru3(CO)9B] ( 5 ). The solid‐state X‐ray structure of compound 1 shows a significantly shorter boron–boron bond length. The detailed spectroscopic data of 1 and the unusual structural and bonding features have been described. All the complexes have been characterized by using 1H, 11B, 13C NMR spectroscopy, mass spectrometry, and X‐ray diffraction analysis. The DFT computations were used to shed light on the bonding and electronic structures of these new compounds. The study reveals a dominant B?H?Mn, a weak B?B?Mn interaction, and an enhanced B?B bonding in 1 .  相似文献   

10.
Tellurium–peroxo complexes in aqueous solutions have never been reported. In this work, ammonium peroxotellurates (NH4)4Te2(μ‐OO)2(μ‐O)O4(OH)2 ( 1 ) and (NH4)5Te2(μ‐OO)2(μ‐O)O5(OH)?1.28 H2O?0.72 H2O2 ( 2 ) were isolated from 5 % hydrogen peroxide aqueous solutions of ammonium tellurate and characterized by single‐crystal and powder X‐ray diffraction analysis, by Raman spectroscopy and thermal analysis. The crystal structure of 1 comprises ammonium cations and a symmetric binuclear peroxotellurate anion [Te2(μ‐OO)2(μ‐O)O4(OH)2]4?. The structure of 2 consists of an unsymmetrical [Te2(μ‐OO)2(μ‐O)O5(OH)]5? anion, ammonium cations, hydrogen peroxide, and water. Peroxotellurate anions in both 1 and 2 contain a binuclear Te2(μ‐OO)2(μ‐O) fragment with one μ‐oxo‐ and two μ‐peroxo bridging groups. 125Te NMR spectroscopic analysis shows that the peroxo bridged bitellurate anions are the dominant species in solution, with 3–40 %wt H2O2 and for pH values above 9. DFT calculations of the peroxotellurate anion confirm its higher thermodynamic stability compared with those of the oxotellurate analogues. This is the first direct evidence for tellurium–peroxide coordination in any aqueous system and the first report of inorganic tellurium–peroxo complexes. General features common to all reported p‐block element peroxides could be discerned by the characterization of aqueous and crystalline peroxotellurates.  相似文献   

11.
Investigation of the Hydrolytic Build‐up of Iron(III)‐Oxo‐Aggregates The synthesis and structures of five new iron/hpdta complexes [{FeIII4(μ‐O)(μ‐OH)(hpdta)2(H2O)4}2FeII(H2O)4]·21H2O ( 2 ), (pipH2)2[Fe2(hpdta)2]·8H2O ( 4 ), (NH4)4[Fe6(μ‐O)(μ‐OH)5(hpdta)3]·20.5H2O ( 5 ), (pipH2)1.5[Fe4(μ‐O)(μ‐OH)3(hpdta)2]·6H2O ( 7 ), [{Fe6(μ3‐O)2(μ‐OH)2(hpdta)2(H4hpdta)2}2]·py·50H2O ( 9 ) are described and the formation of these is discussed in the context of other previously published hpdta‐complexes (H5hpdta = 2‐Hydroxypropane‐1, 3‐diamine‐N, N, N′, N′‐tetraacetic acid). Terminal water ligands are important for the successive build‐up of higher nuclearity oxy/hydroxy bridged aggregates as well as for the activation of substrates such as DMA and CO2. The formation of the compounds under hydrolytic conditions formally results from condensation reactions. The magnetic behaviour can be quantified analogously up to the hexanuclear aggregate 5 . The iron(III) atoms in 1 ‐ 7 are antiferromagnetically coupled giving rise to S = 0 spin ground states. In the dodecanuclear iron(III) aggregate 9 we observe the encapsulation of inorganic ionic fragments by dimeric{M2hpdta}‐units as we recently reported for AlIII/hpdta‐system.  相似文献   

12.
Valence‐to‐Core (VtC) X‐ray emission spectroscopy (XES) was used to directly detect the presence of an O?O bond in a complex comprising the [CuII2(μ‐η22‐O2)]2+ core relative to its isomer with a cleaved O?O bond having a [CuIII2(μ‐O)2]2+ unit. The experimental studies are complemented by DFT calculations, which show that the unique VtC XES feature of the [CuII2(μ‐η22‐O2)]2+ core corresponds to the copper stabilized in‐plane 2p π peroxo molecular orbital. These calculations illustrate the sensitivity of VtC XES for probing the extent of O?O bond activation in μ‐η22‐O2 species and highlight the potential of this method for time‐resolved studies of reaction mechanisms.  相似文献   

13.
Investigation into a hydrothermal reaction system with transition‐metal (TM) ions, 1,4‐bis(1,2,4‐triazol‐1‐lmethyl)benzene (BBTZ) and various charge‐tunable Keggin‐type polyoxometalates (POMs) led to the preparation of four new entangled coordination networks, [CoII(HBBTZ)(BBTZ)2.5][PMo12O40] ( 1 ), [CuI(BBTZ)]5[BW12O40] ? H2O ( 2 ), [CuII(BBTZ)]3[AsWV3WVI9O40] ? 10 H2O ( 3 ), and [CuII5(BBTZ)7(H2O)6][P2W22Cu2O77(OH)2] ? 6 H2O ( 4 ). All compounds were characterized by using elemental analysis, IR spectroscopy, thermogravimetric analysis, powder X‐ray diffraction, and single‐crystal X‐ray diffraction. The mixed valence of W centers in compound 3 was further confirmed by using XPS spectroscopy and bond‐valence sum calculations. In the structural analysis, the entangled networks of 1 – 4 demonstrate zipper‐closing packing, 3D polythreading, 3D polycatenation, and 3D self‐penetration, respectively. Moreover, with the enhancement of POM negative charges and the use of different TM types, the number of nodes in the coordination networks of 1 – 4 increased and the basic metal–organic building motifs changed from a 1D zipper‐type chain (in 1 ) to a 2D pseudorotaxane layer (in 2 ) to a 3D diamond‐like framework (in 3 ) and finally to a 3D self‐penetrating framework (in 4 ). The photocatalytic properties of compounds 1 – 4 for the degradation of methylene blue under UV light were also investigated; all compounds showed good catalytic activity and the photocatalytic activity order of Keggin‐type species was initially found to be {XMo12O40}>{XW12O40}>{XW12?nTMnO40}.  相似文献   

14.
Reaction of early lanthanides, GeO2, and Na2WO4 in a NaOAc buffer results in large crown‐shaped polyoxometalates based on [Ln2GeW10O38]6? subunits. By using Ni2+ as a crystallizing agent, [Na?Ln12Ge6W60O228(H2O)24]35? ( Na?Ln12 ) hexamers formed by alternating β(1,5)/β(1,8) subunits were obtained for Ln=Pr, Nd. The addition of K+ led to a similar anion for Ln=Sm, namely, [K?Sm12Ge6W60O228(H2O)22]35? ( K?Sm12 ) and [K?K7Ln24Ge12W120O444(OH)12(H2O)64]52? ( K?Ln24 ) dodecamers that consist of a central core identical to K?Sm12 decorated with six external γ(3,4) subunits for Ln=Pr, Nd. These anions dissociate in water into hexameric cores and monomeric entities, as shown by ESI mass spectrometry. The former self‐assemble into spherical, hollow, and single‐layered blackberry‐type structures with radii of approximately 75 nm, as monitored by laser light scattering (LLS) and TEM techniques. Analogous studies performed for K?Nd24 in water/acetone mixtures show that the dodecamers remain stable and form in turn their own type of blackberries with sizes that increase from approximately 20 to 50 nm with increasing acetone content. This control over both the composition and size of the vesicle‐like assemblies is achieved for the first time by modifying the architecture of the species that undergoes supramolecular association through the solvent polarity.  相似文献   

15.
The present study focuses on the formation and reactivity of hydroperoxo–iron(III) porphyrin complexes formed in the [FeIII(tpfpp)X]/H2O2/HOO? system (TPFPP=5,10,15,20‐tetrakis(pentafluorophenyl)‐21H,23H‐porphyrin; X=Cl? or CF3SO3?) in acetonitrile under basic conditions at ?15 °C. Depending on the selected reaction conditions and the active form of the catalyst, the formation of high‐spin [FeIII(tpfpp)(OOH)] and low‐spin [FeIII(tpfpp)(OH)(OOH)] could be observed with the application of a low‐temperature rapid‐scan UV/Vis spectroscopic technique. Axial ligation and the spin state of the iron(III) center control the mode of O? O bond cleavage in the corresponding hydroperoxo porphyrin species. A mechanistic changeover from homo‐ to heterolytic O? O bond cleavage is observed for high‐ [FeIII(tpfpp)(OOH)] and low‐spin [FeIII(tpfpp)(OH)(OOH)] complexes, respectively. In contrast to other iron(III) hydroperoxo complexes with electron‐rich porphyrin ligands, electron‐deficient [FeIII(tpfpp)(OH)(OOH)] was stable under relatively mild conditions and could therefore be investigated directly in the oxygenation reactions of selected organic substrates. The very low reactivity of [FeIII(tpfpp)(OH)(OOH)] towards organic substrates implied that the ferric hydroperoxo intermediate must be a very sluggish oxidant compared with the iron(IV)–oxo porphyrin π‐cation radical intermediate in the catalytic oxygenation reactions of cytochrome P450.  相似文献   

16.
Four calixarene-coordinated titanium-oxo clusters, namely, [Ti4(C6A)23-O)2(DMF)2] ( CIAC-258 ), [Ti8(H3C6A)4(C6H5PO3)82-O)4]4− ( CIAC-259 ), [Ti6(TC4A)32-O)3 (OiPr)6] ( CIAC-260 ) and [Ti6(H2TC4A)4(C6H5PO3)42-O)5(DMF)2]2− ( CIAC-261 ) were obtained, which feature sandwich-like, windmill-like, triangular, and tetrahedral structures, respectively. The polarity of the solvent determines the involvement of the auxiliary ligand phenylphosphonic acid in the formation of the products and their structures. Compounds CIAC-258 and CIAC-261 exhibit good catalytic performance in the selective oxidation of sulfides to sulfoxides with H2O2 as the oxidant, which can be attributed to the Ti active sites coordinated by exchangeable DMF molecules. Moreover, density functional theory (DFT) calculations revealed that the Ti-hydroperoxo species formed by the interaction of the Ti active site in CIAC-258 or CIAC-261 and H2O2 is the most likely catalytic active component during the catalytic sulfoxidation process.  相似文献   

17.
By using a linear tetraphosphine, meso‐bis[(diphenylphosphinomethyl)phenylphosphino]methane (dpmppm), nona‐ and hexadecanuclear copper hydride clusters, [Cu9H7(μ‐dpmppm)3]X2 (X=Cl ( 1 a ), Br ( 1 b ), I ( 1 c ), PF6 ( 1 d )) and [Cu16H14(μ‐dpmppm)4]X2 (X2=I2 ( 2 c ), (4/3) PF6?(2/3) OH ( 2 d )) were synthesized and characterized. They form copper‐hydride cages of apex‐truncated supertetrahedral {Cu9H7}2+ and square‐face‐capped cuboctahedral {Cu16H14}2+ structures. The hydride positions were estimated by DFT calculations to be facially dispersed around the copper frameworks. A kinetically controlled synthesis gave an unsymmetrical Cu8H6 cluster, [Cu8H6(μ‐dpmppm)3]2+ ( 3 ), which readily reacted with CO2 to afford linear Cu4 complexes with formate bridges, leading to an unprecedented hydrogenation of CO2 into formate catalyzed by {Cu4(μ‐dpmppm)2} platform. The results demonstrate that new motifs of copper hydride clusters could be established by the tetraphosphine ligands, and the structures influence their reactivity.  相似文献   

18.
Polyoxometalates (POMs) with heterodinuclear lanthanoid cores, TBA8H4[{Ln(μ2‐OH)2Ln′}(γ‐SiW10O36)2] ( LnLn′ ; Ln=Gd, Dy; Ln′=Eu, Yb, Lu; TBA=tetra‐n‐butylammonium), were successfully synthesized through the stepwise incorporation of two types of lanthanoid cations into the vacant sites of lacunary [γ‐SiW10O36]8? units without the use of templating cations. The incorporation of a Ln3+ ion into the vacant site between two [γ‐SiW10O36]8? units afforded mononuclear Ln3+‐containing sandwich‐type POMs with vacant sites ( Ln1 ; TBA8H5[{Ln(H2O)4}(γ‐SiW10O36)2]; Ln=Dy, Gd, La). The vacant sites in Ln1 were surrounded by coordinating W? O and Ln? O oxygen atoms. On the addition of one equivalent of [Ln′(acac)3] to solutions of Dy1 or Gd1 in 1,2‐dichloroethane (DCE), heterodinuclear lanthanoid cores with bis(μ2‐OH) bridging ligands, [Dy(μ2‐OH)2Ln′]4+, were selectively synthesized ( LnLn′ ; Ln=Dy, Gd; Ln′=Eu, Yb, Lu). On the other hand, La1 , which contained the largest lanthanoid cation, could not accommodate a second Ln′3+ ion. DyLn′ showed single‐molecule magnet behavior and their energy barriers for magnetization reversal (ΔE/kB) could be manipulated by adjusting the coordination geometry and anisotropy of the Dy3+ ion by tuning the adjacent Ln′3+ ion in the heterodinuclear [Dy(μ2‐OH)2Ln′]4+ cores. The energy barriers increased in the order: DyLu (ΔE/kB=48 K)< DyYb (53 K)< DyDy (66 K)< DyEu (73 K), with an increase in the ionic radii of Ln′3+; DyEu showed the highest energy barrier.  相似文献   

19.
Bis(tetraphenylphosphonium)‐tris(μ‐hydroxo)hexaaquatriberylliumpentachloride, (Ph4P)2[Be3(μ‐OH)3(H2O)6]Cl5 ( 1 ), was surprisingly obtained by reaction of (Ph4P)N3 · n H2O with BeCl2 in dichloromethane suspension and subsequent crystallization from acetonitrile to give single crystals of composition 1· 5.25CH3CN. According to the crystal structure determination space group P , Z = 2, lattice dimensions at 100 K: a = 1354.8(2), b = 1708.7(2), c = 1753.2(2) pm, α = 114.28(1)°, β = 94.80(1)°, γ = 104.51(1)°, R1 = 0.0586] the [Be3(μ‐OH)3(H2O)6]3+ cations form six‐mem‐bered Be3O3 rings with boat conformation and distorted tetrahedrally coordinated beryllium atoms with the terminally coordinated H2O molecules. The structure ist characterized by a complicated three dimensional hydrogen‐bridging network including O–H ··· O, O–H ··· Cl, and O–H ··· NCCH3 contacts. DFT calculations result in nearly planar [Be3(OH)3] six‐membered ring conformations.  相似文献   

20.
Group 12 halides and 2,2′‐dithiobis(pyridine N‐oxide) (dtpo) form the crystalline the 1D coordination polymers [ZnX2(μ‐dtpo‐κ2O:O′)]n [X = Cl ( 1 ), Br ( 2 ), I ( 3 )], [Cd3(μ‐Cl)4Cl2(μ‐dtpo‐κ2O:O′)2(CH3OH)2]n ( 4 ), [(CdBr2)23‐dtpo‐κ3O,O:O′)2(H2O)2]n ( 5 ), and [(CdI2)2(μ‐dtpo‐κ2O:O′)3]n ( 6 ) in methanol. The compounds were structurally characterized by single‐crystal X‐ray analysis. Compounds 1 – 3 represent an isomorphous series of single‐stranded coordination polymers, whereas the CdII derivatives are structurally diverse. The metal nodes in 4 and 5 are trinuclear and dinuclear cadmium clusters, respectively. In 4 and 5 , the metal nodes are linked into double‐stranded 1D coordination polymers by two dtpo bridging ligands. Compound 6 contains mononuclear CdI2 units as nodes and can be viewed as an alternating copolymer of CdI2(μ‐dtpo‐κ2O:O′)2 and CdI2(μ‐dtpo‐κ2O:O′) entities. Owing to the disulfide moiety, the dtpo bridging ligand inevitably exhibits an axially chiral angular structure. The dtpo ligand adopts various coordination modes through the pyridine N‐oxide oxygen atoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号