首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report here on the selective synthesis of fullerene pentakisadducts 3 with an incomplete octahedral addition pattern by means of mixed [5:1]hexakisadducts 1 that involve an isoxazoline moiety as a protection group. The isoxazoline addend can be cleanly cleaved by irradiation with light. By using this protection–deprotection strategy, a variety of fullerene pentakisadducts 3 were synthesized in 29–44 % overall yield without the need of HPLC purification. This novel photolytic deprotection of 1 can be explained by an initial electron transfer that leads to a biradical, which can easily eliminate the isoxazoline added. The very efficient and straightforward syntheses of the bisfullerene 4 and the globular hexakisadduct 7 , each of which involves mixed octahedral addition patterns, clearly demonstrate the advantage of fullerene pentakisadducts 3 as suitable precursors for the construction of highly functional and complex [5:1]hexakisadduct architectures. Complete structural characterization of all new compounds was carried out by MALDI mass spectrometry, UV/Vis, FTIR, 1H NMR and 13C NMR spectroscopy, as well as X‐ray diffraction.  相似文献   

2.
3.
4.
The chemical functionalization of endohedral (metallo)fullerenes has become a main focus of research in the last few years. It has been found that the reactivity of endohedral (metallo)fullerenes may be quite different from that of the empty fullerenes. Encapsulated species have an enormous influence on the thermodynamics, kinetics, and regiochemistry of the exohedral addition reactions undergone by these species. A detailed understanding of the changes in chemical reactivity due to incarceration of atoms or clusters of atoms is essential to assist the synthesis of new functionalized endohedral fullerenes with specific properties. Herein, we report the study of the Diels–Alder cycloaddition between 1,3‐butadiene and all nonequivalent bonds of the Ti2C2@D3h‐C78 metallic carbide endohedral metallofullerene (EMF) at the BP86/TZP//BP86/DZP level of theory. The results obtained are compared with those found by some of us at the same level of theory for the D3h‐C78 free cage and the M3N@D3h‐C78 (M=Sc and Y) metallic nitride EMFs. It is found that the free cage is more reactive than the Ti2C2@D3h‐C78 EMF and this, in turn, has a higher reactivity than M3N@D3h‐C78. The results indicate that, for Ti2C2@D3h‐C78, the corannulene‐type [5, 6] bonds c and f , and the type B [6, 6] bond 3 are those thermodynamically and kinetically preferred. In contrast, the D3h‐C78 free cage has a preference for addition to the [6, 6] 1 and 6 bonds and the [5, 6] b bond, whereas M3N@D3h‐C78 favors additions to the [6, 6] 6 (M=Sc) and [5, 6] d (M=Y) bonds. The reasons for the regioselectivity found in Ti2C2@D3h‐C78 are discussed.  相似文献   

5.
Electrospray ionization mass spectrometry/mass spectrometry (ESI/MS/MS) and multiple stage mass spectrometry (MSn, n > 2) were used in the positive ion mode, with two different types of mass spectrometers, a quadrupole time‐of‐flight and an ion trap, to characterize two sets of different types of C60‐aminopyrimidine exohedral derivatives. In one set, the pyrimidine moiety bears an amino acid methyl ester residue, and in the other the pyrimidine ring is part of a nucleoside‐type moiety, the latter existing as two separated diastereoisomers. We have found that retro‐cycloaddition processes occur for the closed shell protonated species formed by electrospraying C60 derivatives synthesized by Diels–Alder reactions, whereas for the C60 derivatives synthesized via 1,3‐dipolar cycloadditions, these processes did not occur. Formation of diagnostic ions allowed the differentiation between the two groups of fullerene derivatives, and between the diastereoisomers of C60 derivatives with a nucleoside‐type moiety. In general, the fragmentation processes are strongly dependent on the protonation sites and on the structure of the exohedral moieties. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
7.
双芳亚甲基环酮与睛氧化物进行l,3-偶极环加成反应,合成了15个新的双螺异噁唑啉类化合物. 采用元素分析、NMR、IR以及X射线单晶衍射等多种谱学技术对产物进行详细表征, 而产物的晶体结构表明了此类反应具有高度的区域选择性, 而密度泛函计算结果合理地解释了实验结果.  相似文献   

8.
We report here on the facile synthetic access of a new family of bis‐, tetra‐, hexa‐, and heptafullerenes (prototypes I–IV), which can be easily converted into very water soluble polyelectrolytes with up to 60 charges located on their periphery. Their very regioselective formation is based on the use of C2v‐symmetrical pentakisadducts 3 and hexakisadducts 2 as key intermediates. All fullerene moieties incorporated in these macromolecular structures involve a complete or partial octahedral addition pattern. Tripod‐shaped tetrafullerenes 9 a , b (type II), which can accumulate up to thirty positive or negative charges, are very soluble in acidic or basic water, respectively. Hexafullerenes 13 a , b (type III) were synthesized via isoxazolinofullerenes 10 followed by photolytic cleavage of the isoxazoline group. The giant heptafullerene 1 b (type IV) representing the anionic counterpart of the previously synthesized polyelectrolyte 1 a can store up to 60 negative charges on its periphery within a defined three‐dimensional structure. We also discovered a new cyclopropanation reaction of C60 involving dibromomalonates and 1,8‐diazabicyclo[5.4.0]undec‐7‐ene (DBU). This reaction allows even for the highly regioselective formation of hexakisadducts with an octahedral addition pattern without requiring activation with reversibly binding addends such as 9,10‐dimethylanthracene (DMA).  相似文献   

9.
10.
CF3‐derivatized fullerenes prove once again to be promising scaffolds for regioselective fullerene functionalization: now with the smallest possible addends—hydrogen atoms. Hydrogenation of Cs‐C70(CF3)8 and C1‐C70(CF3)10 by means of reduction with Zn/Cu couple in the presence of water proceeds regioselectively, yielding only one major isomer of C70(CF3)8H2 and only two for C70(CF3)10H2, whose addition patterns are combined in the only abundant isomer of C70(CF3)10H4. The observed selectivity is governed by the electronic structure of trifluoromethylated substrates. Interestingly, we discovered that Clar's theory can be utilized to predict the regiochemistry of functionalization, and we look forward to testing it on forthcoming cases of derivatization of pre‐functionalized fullerene building blocks.  相似文献   

11.
12.
The first regioselective functionalization of La@C82 by two different groups has been performed. Bis‐adducts of La@C82 with Cp* and adamantylidene were synthesized by using two different routes and characterized. Spectroscopic analysis and theoretical calculations reveal that the addition position is controlled by the charge density and p‐orbital axis vector value of the fullerene cage.  相似文献   

13.
One of the most important reactions in fullerene chemistry is the Diels–Alder (DA) reaction. In two previous experimental studies, the DA cycloaddition reactions of cyclopentadiene (Cp) and 1,2,3,4,5‐pentamethylcyclopentadiene (Cp*) with La@C2v‐C82 were investigated. The attack of Cp was proposed to occur on bond 19 , whereas that of Cp* was confirmed by X‐ray analysis to be over bond o . Moreover, the stabilities of the Cp and Cp* adducts were found to be significantly different, that is, the decomposition of La@C2v‐C82Cp was one order of magnitude faster than that of La@C2v‐C82Cp*. Herein, we computationally analyze these DA cycloadditions with two main goals: First, to compute the thermodynamics and kinetics of the cycloadditions of Cp and Cp* to different bonds of La@C2v‐C82 to assess and compare the regioselectivity of these two reactions. Second, to understand the origin of the different thermal stabilities of the La@C82Cp and La@C82Cp* adducts. Our results show that the regioselectivity of the two DA cycloadditions is the same, with preferred attack on bond o . This result corrects the previous assumption of the regioselectivity of the Cp attack that was made based only on the shape of the La@C82 singly occupied molecular orbital. In addition, we show that the higher stability of the La@C82Cp* adduct is not due to the electronic effects of the methyl groups on the Cp ring, as previously suggested, but to higher long‐range dispersion interactions in the Cp* case, which enhance the stabilization of the reactant complex, transition state, and products with respect to the separated reactants. This stabilization for the La@C82Cp* case decreases the Gibbs reaction energy, thus allowing competition between the direct and retro reactions and making dissociation more difficult.  相似文献   

14.
15.
The chemical functionalization of endohedral metallofullerenes (EMFs) has aroused considerable interest due to the possibility of synthesizing new species with potential applications in materials science and medicine. Experimental and theoretical studies on the reactivity of endohedral metallofullerenes are scarce. To improve our understanding of the endohedral metallofullerene reactivity, we have systematically studied with DFT methods the Diels–Alder cycloaddition between s‐cis‐1,3‐butadiene and practically all X@Ih‐C80 EMFs synthesized to date: X=Sc3N, Lu3N, Y3N, La2, Y3, Sc3C2, Sc4C2, Sc3CH, Sc3NC, Sc4O2 and Sc4O3. We have studied both the thermodynamic and kinetic regioselectivity, taking into account the free rotation of the metallic cluster inside the fullerene. This systematic study has been made possible through the use of the frozen cage model (FCM), a computationally cheap approach to accurately predicting the exohedral regioselectivity of cycloaddition reactions in EMFs. Our results show that the EMFs are less reactive than the hollow Ih‐C80 cage. Except for the Y3 cluster, the additions occur predominantly at the [5,6] bond. In many cases, however, a mixture of the two possible regioisomers is predicted. In general, [6,6] addition is favored in EMFs that have a larger charge transfer from the metal cluster to the cage or a voluminous metal cluster inside. The present guide represents the first complete and exhaustive investigation of the reactivity of Ih‐C80‐based EMFs.  相似文献   

16.
17.
The homofullerene compound cis‐2‐C60(CF2)2, which has an unusual kind of open/closed valence tautomerism undergoes consecutive regioselective hydrogenation at bridgehead carbon atoms upon reduction with Zn/Cu couple in H2O‐toluene mixture. The tautomerism barrier in cis‐2‐C60(CF2)2 is negligible in the neutral state, whereas negative charging both impedes tautomeric transformation and promotes regioselective addition of electrophilic species at the bridgehead carbon atoms. In light of this observation, two novel homofullerene derivatives, mixed [6,6]‐open/closed C60(CF2)2H2 and [6,6]‐open cis‐2‐C60(CF2)2H4, were synthesized and their structures were unambiguously determined by means of single crystal X‐ray crystallography and NMR spectroscopy.  相似文献   

18.
Fullerene derivatives with different addition patterns exhibit different physical, chemical, and biological properties, which are important for fullerene applications. Novel and rare 1,2,3,16‐functionalized [60]fullerene derivatives having a five‐membered heterocycle fused to a [5,6]‐junction were obtained with high regioselectivity by electrochemical derivatization of a [60]fulleroindoline. The product structures were determined by spectroscopic data and single‐crystal X‐ray analysis. The obtained high regioselectivity was rationalized using theoretical calculations.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号