首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The first example of a bifunctional organocatalyst assembled through dynamic covalent chemistry (DCC) is described. The catalyst is based on reversible imine chemistry and can catalyze the Morita–Baylis–Hillman (MBH) reaction of enones with aldehydes or N‐tosyl imines. Furthermore, these dynamic catalysts were shown to be optimizable through a systemic screening approach, in which large mixtures of catalyst structures were generated, and the optimal catalyst could be directly identified by using dynamic deconvolution. This strategy allowed one‐pot synthesis and in situ evaluation of several potential catalysts without the need to separate, characterize, and purify each individual structure. The systems were furthermore shown to catalyze and re‐equilibrate their own formation through a previously unknown thiourea‐catalyzed transimination process.  相似文献   

2.
This work reports that the composition of a dynamic library (DL) of interconverting imines can be controlled over time in a dissipative fashion by the addition of an activated carboxylic acid used as a chemical fuel. When the fuel is added to the DL, which is initially under thermodynamic equilibrium, the composition of the mixture dramatically changes and a new, dissipative (out of equilibrium) state is reached that persists until fuel exhaustion. Thus, a transient dissipative dynamic library (DDL) is generated that, eventually, reverts back to the initial DL when the fuel is consumed, closing a DL→DDL→DL cycle. The larger the amount of added fuel, the longer the time spent by the system in the DDL state. The transimination reaction is shown to be an optimal candidate for the realization of a dissipative dynamic covalent chemistry (DDCvC).  相似文献   

3.
The reversibility of imine bonds has been exploited to great effect in the field of dynamic covalent chemistry, with applications such as preparation of functional systems, dynamic materials, molecular machines, and covalent organic frameworks. However, acid catalysis is commonly needed for efficient equilibration of imine mixtures. Herein, it is demonstrated that hydrogen bond donors such as thioureas and squaramides can catalyze the equilibration of dynamic imine systems under unprecedentedly mild conditions. Catalysis occurs in a range of solvents and in the presence of many sensitive additives, showing moderate to good rate accelerations for both imine metathesis and transimination with amines, hydrazines, and hydroxylamines. Furthermore, the catalyst proved simple to immobilize, introducing both reusability and extended control of the equilibration process.  相似文献   

4.
The doubly functional aminotransferase BtrS in the 2-deoxystreptamine (DOS) biosynthesis, in which two transaminations are involved, was characterized by a genetic as well as a chemical approach with the heterologously expressed enzyme. The gene disruption study clearly showed that BtrS is involved, in addition to the previously confirmed first transamination, in the second transamination as well. This dual function of BtrS for the DOS biosynthesis was further confirmed by the structural determination of the reverse reaction product from DOS. Enantiospecific formation of the reverse reaction product from DOS clearly showed that BtrS distinguishes the enantiotopic amino groups of DOS, but in contrast, both enantiomers of 2-deoxy-scyllo-inosose (DOI) were efficiently accepted by BtrS to give a racemic product. This unique stereochemical recognition of DOI chirality and DOS prochirality by BtrS is mechanistically explained by a specific hydrogen-bond donating force in the enzyme active site as a particular feature of this doubly functional enzyme.  相似文献   

5.
One of the key points in the design of vitrimers is controlling the associative exchange kinetics. One common chemistry used in vitrimers is based on the dynamic amine exchange reaction of vinylogous acyl compounds in presence of free amine. Understanding the reaction mechanism is essential to assist the optimization of the reaction conditions as well as the molecular structure of the reactant compounds in the pursuit of new materials. In this work, a computational study has been performed to explore different reaction mechanisms in neutral, acidic and in basic conditions or in the presence of Lewis acids, as well as the effect of chemical modifications in the exchange reaction. The results reveal that the formation of hydrogen bonds are a key feature and that the vinylogous urea improves the transamination compared to vinylogous urethane. The esteric hindrance of the amino group in the vinylogous compound also plays an important role. Finally, the nature of the free amine can improve the reactivity by equilibrating two contrary effects: the basicity favors the nucleophilic attack and the conjugated acidity favors the protonation. The findings of this theoretical work shed light in the design of new vitrimers with controlled exchange kinetics by chemical modifications.  相似文献   

6.
The introduction of dynamic covalent polymers, in which the monomer units are linked by reversible covalent bonds and can undergo component exchange, opens up new possibilities for the generation of functional materials. Extending this approach to the generation of dynamic biopolymers in aqueous media, which are able to adapt constitution (sequence, length) to external factors (e.g., environment, medium, template), would provide an alternative approach to the de novo design of functional dynamic bio‐macromolecules. As a first step towards this goal, various mono‐ and bifunctionalised (hetero‐ and homotopic) nucleic acid‐derived building blocks of type I – X have been synthesised for the generation of dynamic main‐chain and side‐chain reversible nucleic acid analogues. Hydrazide‐ and/or acetal (protected carbonyl)‐functionalised components were selected, which differ in terms of flexibility, length, net formal charge, and hydrazide/acetal substituents, in order to explore how such factors may affect the properties (structure, solubility, molecular recognition features) of the polymer products that may be generated by polycondensation.  相似文献   

7.
Dynamic covalent bonds are extensively employed in dynamic combinatorial chemistry. The metathesis reaction of disulfide bonds is widely used, but requires catalysis or irradiation with ultraviolet (UV) light. It was found that diselenide bonds are dynamic covalent bonds and undergo dynamic exchange reactions under mild conditions for diselenide metathesis. This reaction is induced by irradiation with visible light and stops in the dark. The exchange is assumed to proceed through a radical mechanism, and experiments with 2,2,6,6‐tetramethylpiperidin‐1‐yloxyl (TEMPO) support this assumption. Furthermore, the reaction can be conducted in different solvents, including protic solvents. Diselenide metathesis can also be used to synthesize diselenide‐containing asymmetric block copolymers. This work thus entails the use of diselenide bonds as dynamic covalent bonds, the development of a dynamic exchange reaction under mild conditions, and an extension of selenium‐related dynamic chemistry.  相似文献   

8.
《化学:亚洲杂志》2017,12(19):2591-2596
Supramolecular‐assembly‐mediated functionalization of gold nanorods (GNRs) has been developed by reversible phase transfer between water and oils, which offers a facile method for fabricating robust GNRs with surface‐charge tunability. In this regard, trimethylammonium (TMA) GNRs were initially prepared from conventional cetyltrimethylammonium bromide (CTAB) GNRs by means of a ligand‐exchange reaction in the presence of an excess amount of TMA ligands. To further expand their functionality and potential applications, electrostatic assemblies of positively charged TMA‐GNRs with negatively charged oleate ions were prepared. These assemblies (OA‐GNRs) can undergo facile phase transfer from water to hexane. Interestingly, the reversible electrostatic assembly between the TMA and OA ions fabricated onto GNRs can be easily disrupted by treatment with HCl, which removes the OA ions from the GNRs to re‐form the TMA‐GNRs, which can be made soluble in aqueous media again. In addition, OA‐GNRs can be further used for the synthesis of negatively charged GNRs such as 11‐mercaptoundecanoic acid (MUA) GNRs, which are hard to prepare directly from CTAB‐GNRs. This versatile method for phase transfer and functionalization on GNRs is expected to broaden the scope of their applications in sensing, biomedical imaging, photothermal therapies, and drug delivery systems.  相似文献   

9.
Understanding the emergence of function in complex reaction networks is a primary goal of systems chemistry and origin-of-life studies. Especially challenging is to create systems that simultaneously exhibit several emergent functions that can be independently tuned. In this work, a multifunctional complex reaction network of nucleophilic small molecule catalysts for the Morita-Baylis-Hillman (MBH) reaction is demonstrated. The dynamic system exhibited triggered self-resolution, preferentially amplifying a specific catalyst/product set out of a many potential alternatives. By utilizing selective reversibility of the products of the reaction set, systemic thermodynamically driven error-correction could also be introduced. To achieve this, a dynamic covalent MBH reaction based on adducts with internal H-transfer capabilities was developed. By careful tuning of the substituents, rate accelerations of retro-MBH reactions of up to four orders of magnitude could be obtained. This study thus demonstrates how efficient self-sorting of catalytic systems can be achieved through an interplay of several complex emergent functionalities.  相似文献   

10.
Systems chemistry aims to mimic the functional behavior of living systems by constructing chemical reaction networks with well‐defined dynamic properties. Enzymes can play a key role in such networks, but there is currently no general and scalable route to the design and construction of enzymatic reaction networks. Here, we introduce reversible, cleavable peptide inhibitors that can link proteolytic enzymatic activity into simple network motifs. As a proof‐of‐principle, we show auto‐activation topologies producing sigmoidal responses in enzymatic activity, explore cross‐talk in minimal systems, design a simple enzymatic cascade, and introduce non‐inhibiting phosphorylated peptides that can be activated using a phosphatase.  相似文献   

11.
Nonenzymatic pyridoxal phosphate (PLP) catalyzed decarboxylations and transaminations have been revisited experimentally. Metal ions are known to catalyze a variety of PLP-dependent reactions in solution, including transamination. It is demonstrated here that the rate accelerations previously observed are due solely to enhancement of Schiff base formation under subsaturating conditions. A variety of metal ions were tested for their effects on the reactivity of the 2-methyl-2-aminomalonate Schiff bases. All were found to have either no effect or a small inhibitory one. The effects of Al(3+) were studied in detail with the Schiff bases of 2-methyl-2-aminomalonate, 2-aminoisobutyrate, alanine, and ethylamine. The decarboxylation of 2-methyl-2-aminomalonate is unaffected by metalation with Al(3+), while the decarboxylation of 2-aminoisobutyrate is inhibited 125-fold. The transamination reaction of ethylamine is 75-fold slower than that of alanine. Ethylamine transamination is inhibited 4-fold by Al(3+) metalation, while alanine transamination is inhibited only 1.3-fold. Metal ion inhibition of Schiff base reactivity suggests a simple explanation for the lack of known PLP dependent enzymes that make direct mechanistic use of metal ions. A comparison of enzyme catalyzed, PLP catalyzed, and uncatalyzed reactions shows that PLP dependent decarboxylases are among the best known biological rate enhancers: decarboxylation occurs 10(18)-fold faster on the enzyme surface than it does free in solution. PLP itself provides the lion's share of the catalytic efficiency of the holoenzyme: at pH 8, free PLP catalyzes 2-aminoisobutyrate decarboxylation by approximately 10(10)-fold, with the enzyme contributing an additional approximately 10(8)-fold.  相似文献   

12.
Sc(OTf)(3) efficiently catalyzes the self-sufficient transimination reaction between various types of C=N bonds in organic solvents, with turnover frequencies up to 3600 h(-)(1) and rate accelerations up to 6 x 10(5). The mechanism of the crossover reaction in mixtures of amines and imines is studied, comparing parallel individual reactions with coupled equilibria. The intrinsic kinetic parameters for isolated reactions cannot simply be added up when several components are mixed, and the behavior of the system agrees with the presence of a unique mediator that constitutes the core of a network of competing reactions. In mixed systems, every single amine or imine competes for the same central hub, in accordance with their binding affinity for the catalyst metal ion center. More generally, the study extends the basic principles of constitutional dynamic chemistry to interconnected chemical transformations and provides a step toward dynamic systems of increasing complexity.  相似文献   

13.
The aqueous reaction between equimolar amounts of 2-(2-(2-aminoethoxy)ethoxy)ethanamine, 1,10-phenanthroline-2,9-dialdehyde and copper(I) produced a dimeric helical macrocycle in quantitative yield. This ring could also be generated by the addition of two equivalents of the diamine to an acyclic helicate containing four mono-imine residues: A transimination occurred, the chelate effect being implicated as a driving force. In the case of a helicate containing mono-imines derived from anilines, the substitution of diamine for monoamine was reversible upon lowering the pH. The aliphatic diamine was protonated at a higher pH than the arylamine, which left the arylamine free for incorporation instead of the alkyl diamine. This reaction thus opened the possibility of switching between closed macrocyclic and open helicate topologies by changing the pH. An additional closed topology became accessible through the use of a diamine that incorporates two rigid phenylene spacer groups between a flexible chain and the imine-forming nitrogen atoms. The resulting catenate consists of a pair of topologically interlinked macrocycles. The presence of the phenylene groups appeared to dictate the topology of the final product, making the formation of a single macrocycle energetically disfavoured.  相似文献   

14.
15.
Improved understanding of the underwater attachment strategy of the blue mussels and other marine organisms has inspired researchers to find new routes to advanced materials. Mussels use polyphenols, such as the catechol‐containing amino acid 3,4‐dihydroxyphenylalanine (DOPA), to attach to surfaces. Catechols and their analogues can undergo both oxidative covalent cross‐linking under alkaline conditions and take part in coordination chemistry. The former has resulted in the widespread use of polydopamine and related materials. The latter is emerging as a tool to make self‐healing materials due to the reversible nature of coordination bonds. We review how mussel‐inspired materials have been made with a focus on the less developed use of metal coordination and illustrate how this chemistry can be widely to make self‐healing materials.  相似文献   

16.
Chemistry is progressively unraveling the processes that underlie the evolution of matter towards states of higher complexity and the generation of novel features along the way by self‐organization under the pressure of information. Chemistry has evolved from molecular to supramolecular to become adaptive chemistry by way of constitutional dynamics, which allow for adaptation, through component selection in an equilibrating set. Dynamic systems can be represented by weighted dynamic networks that define the agonistic and antagonistic relationships between the different constituents linked through component exchange. Such networks can be switched through amplification/up‐regulation of the best adapted/fittest constituent(s) in a dynamic set. Accessing higher level functions such as training, learning, and decision making represent future lines of development for adaptive chemical systems.  相似文献   

17.
18.
Existing methods for the covalent functionalization of nanoparticles rely on kinetically controlled reactions, and largely lack the sophistication of the preeminent oligonucleotide‐based noncovalent strategies. Here we report the application of dynamic covalent chemistry for the reversible modification of nanoparticle (NP) surface functionality, combining the benefits of non‐biomolecular covalent chemistry with the favorable features of equilibrium processes. A homogeneous monolayer of nanoparticle‐bound hydrazones can undergo quantitative dynamic covalent exchange. The pseudomolecular nature of the NP system allows for the in situ characterization of surface‐bound species, and real‐time tracking of the exchange reactions. Furthermore, dynamic covalent exchange offers a simple approach for reversibly switching—and subtly tuning—NP properties such as solvophilicity.  相似文献   

19.
Enzyme-mediated dynamic combinatorial chemistry combines the concept of thermodynamically controlled covalent self-assembly with the inherent biological relevance of enzymatic transformations. A system of interconverting cyclodextrins has been explored, in which the glycosidic linkage is rendered dynamic by the action of cyclodextrin glucanotransferase (CGTase). External factors, such as pH, temperature, solvent, and salinity are reported to modulate the composition of the dynamic cyclodextrin library. Dynamic libraries of cyclodextrins (CDs) could be obtained in wide ranges of pH (5.0–9.0), temperature (5–37 °C), and salinity (up to 7.5 m NaNO3), and with high organic solvent content (50 % by volume of ethanol), showing that enzyme-mediated dynamic systems can be robust and not limited to physiological conditions. Furthermore, it is demonstrated how strategic choice of reaction conditions can enhance template effects, in this case, to achieve highly selective production of α-CD, an otherwise challenging target due to competition from the structurally similar β-CD.  相似文献   

20.
Constitutional dynamic chemistry (CDC), including both dynamic covalent chemistry and dynamic noncovalent chemistry, relies on reversible formation and breakage of bonds to achieve continuous changes in constitution by reorganization of components. In this regard, CDC is considered to be an efficient and appealing strategy for selective fabrication of surface nanostructures by virtue of dynamic diversity. Although constitutional dynamics of monolayered structures has been recently demonstrated at liquid/solid interfaces, most of molecular reorganization/reaction processes were thought to be irreversible under ultrahigh vacuum (UHV) conditions where CDC is therefore a challenge to be achieved. Here, we have successfully constructed a system that presents constitutional dynamics on a solid surface based on dynamic coordination chemistry, in which selective formation of metal–organic motifs is achieved under UHV conditions. The key to making this reversible switching successful is the molecule–substrate interaction as revealed by DFT calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号