首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The past decade has witnessed significantly increased interest in the development of smart polypeptide‐based organo‐ and hydrogel systems with stimuli responsiveness, especially those that exhibit sol–gel phase‐transition properties, with an anticipation of their utility in the construction of adaptive materials, sensor designs, and controlled release systems, among other applications. Such developments have been facilitated by dramatic progress in controlled polymerizations of α‐amino acid N‐carboxyanhydrides (NCAs), together with advanced orthogonal functionalization techniques, which have enabled economical and practical syntheses of well‐defined polypeptides and peptide hybrid polymeric materials. One‐dimensional stacking of polypeptides or peptide aggregations in the forms of certain ordered conformations, such as α helices and β sheets, in combination with further physical or chemical cross‐linking, result in the construction of three‐dimensional matrices of polypeptide gel systems. The macroscopic sol–gel transitions, resulting from the construction or deconstruction of gel networks and the conformational changes between secondary structures, can be triggered by external stimuli, including environmental factors, electromagnetic fields, and (bio)chemical species. Herein, the most recent advances in polypeptide gel systems are described, covering synthetic strategies, gelation mechanisms, and stimuli‐triggered sol–gel transitions, with the aim of demonstrating the relationships between chemical compositions, supramolecular structures, and responsive properties of polypeptide‐based organo‐ and hydrogels.  相似文献   

3.
A series of aggregation‐induced emission (AIE) fluorescent gelators (TPE‐Cn‐Chol) were synthesized by attaching tetraphenylethylene (TPE) to cholesterol through an alkyl chain. The properties of the gel, nano‐/microaggregate, and condensed phases were studied carefully. TPE‐Cn‐Chol molecules form AIE fluorescent gels in acetone and in DMF. Their fluorescence can be reversibly switched between the “on” and “off” states by a gel–sol phase transition upon thermal treatment. The AIE properties of aggregated nano‐/microstructures in acetone/water mixtures with different water fractions were studied by using fluorescence spectrometry and scanning electron microscopy (SEM). In different acetone/water mixtures, the TPE‐Cn‐Chol molecules formed different nano‐/microaggregates, such as rodlike crystallites and spherical nanoparticles that showed different fluorescence colors. Finally, the condensed phase behavior of TPE‐Cn‐Chol was studied by using polarizing microscopy (POM), differential scanning calorimetry (DSC), fluorescence spectrometry, fluorescence optical microscopy, and wide‐angle X ray scattering (WAXS). The clover‐shaped TPE unit introduced into the rodlike cholesterol mesogen inhibits not only the formation of a liquid‐crystal phase but also recrystallization upon cooling from the isotropic liquid phase. Very interestingly, TPE‐Cn‐Chol molecules in the condensed state change their fluorescence color under external stimuli, such as melting, grinding, and solvent fuming. The phase transition is the origin of these thermo‐, mechano‐, and vapochromic properties. These findings offer a simple and interesting platform for the creation of multistimuli‐responsive fluorescent sensors.  相似文献   

4.
A new type of multistimuli‐responsive hydrogels cross‐linked by metal ions and biopolymers is reported. By mixing the biopolymer chitosan (CS) with a variety of metal ions at the appropriate pH values, we obtained a series of transparent and stable hydrogels within a few seconds through supramolecular complexation. In particular, the CS–Ag hydrogel was chosen as the model and the gelation mechanism was revealed by various measurements. It was found that the facile association of Ag+ ions with amino and hydroxy groups in CS chains promoted rapid gel‐network formation. Interestingly, the CS–Ag hydrogel exhibits sharp phase transitions in response to multiple external stimuli, including pH value, chemical redox reactions, cations, anions, and neutral species. Furthermore, this soft matter showed a remarkable moldability to form shape‐persistent, free‐standing objects by a fast in situ gelation procedure.  相似文献   

5.
2‐(2′‐Hydroxyphenyl)benzoxazole (HBO) is known for undergoing intramolecular proton transfer in the excited state to result in the emission of its tautomer. A minor long‐wavelength absorption band in the range 370–420 nm has been reported in highly polar solvents such as dimethylsulfoxide (DMSO). However, the nature of this species has not been entirely clarified. In this work, we provide evidence that this long‐wavelength absorption band might have been caused by base or metal salt impurities that are introduced into the spectral sample during solvent transport using glass Pasteur pipettes. The contamination by base or metal salt could be avoided by using borosilicate glass syringes or nonglass pipettes in sample handling. Quantum chemical calculations conclude that solvent‐mediated deprotonation is too energetically costly to occur without the aid of a base of an adequate strength. In the presence of such a base, the deprotonation of HBO and its effect on emission are investigated in dichloromethane and DMSO, the latter of which facilitates deprotonation much more readily than the former. Finally, the absorption and emission spectra of HBO in 13 solvents are reported, from which it is concluded that ESIPT is hindered in polar solvents that are also strong hydrogen bond acceptors.  相似文献   

6.
This work demonstrates that the incorporation of azobenzene residues into the side chain of low‐molecular‐weight peptides can modulate their self‐assembly process in organic solvents leading to the formation of stimuli responsive physical organogels. The major driving forces for the gelation process are hydrogen bonding and π–π interactions, which can be triggered either by thermal or ultrasound external stimuli, affording materials having virtually the same properties. In addition, a predictive model for gelation of polar protic solvent was developed by using Kamlet–Taft solvent parameters and experimental data. The obtained viscoelastic materials exhibited interconnected multistimuli responsive behaviors including thermal‐, photo‐, chemo‐ and mechanical responses. All of them displayed thermoreversability with gel‐to‐sol transition temperatures established between 33–80 °C and gelation times from minutes to several hours. Structure–property relationship studies of a designed peptide library have demonstrated that the presence and position of the azobenzene residue can be operated as a versatile regulator to reduce the critical gelation concentration and enhance both the thermal stability and mechanical strength of the gels, as demonstrated by comparative dynamic rheology. The presence of N‐Boc protecting group in the peptides showed also a remarkable effect on the formation and properties of the gels. Despite numerous examples of peptide‐based gelators known in the literature, this is the first time in which low‐molecular‐weight peptides bearing side chain azobenzene units are used for the synthesis of “intelligent” supramolecular organogels. Compared with other approaches, this strategy is advantageous in terms of structural flexibility since it is compatible with a free, unprotected amino terminus and allows placement of the chromophore at any position of the peptide sequence.  相似文献   

7.
The synthesis and photophysics of two novel 2‐(2′‐hydroxyphenyl)benzothiazole (HBT) derivatives are presented. The electron‐withdrawing trifluoromethyl (CF3) group in compound 1 facilitates the deprotonation of the phenolic hydroxy group. Well‐resolved triple fluorescence from the enol, keto, and phenolic anion, which ranges from 350 to 600 nm, was detected for 1 in ethanol, which marks the first time triple fluorescence from an excited‐state intramolecular proton transfer (ESIPT) molecule has been reported. Both triphenylamine and CF3 were introduced into derivative 2 . Intramolecular charge transfer and the “red‐edge effect” resulted in the bathochromic shift of dual fluorescence of 2 . Triple fluorescence was also observed for 2 in ethanol. In mixed acetonitrile and ethanol, pure white‐light emission with CIE coordinates of (0.33, 0.33) and a quantum yield of 0.25 was achieved for 2 . This work provides a new avenue for the rational design of an ESIPT molecule to achieve white‐light generation under mild conditions.  相似文献   

8.
Supramolecular nanoparticles (SNPs) encompass multiple copies of different building blocks brought together by specific noncovalent interactions. The inherently multivalent nature of these systems allows control of their size as well as their assembly and disassembly, thus promising potential as biomedical delivery vehicles. Here, dual responsive SNPs have been based on the ternary host–guest complexation between cucurbit[8]uril (CB[8]), a methyl viologen (MV) polymer, and mono‐ and multivalent azobenzene (Azo) functionalized molecules. UV switching of the Azo groups led to fast disruption of the ternary complexes, but to a relatively slow disintegration of the SNPs. Alternating UV and Vis photoisomerization of the Azo groups led to fully reversible SNP disassembly and reassembly. SNPs were only formed with the Azo moieties in the trans and the MV units in the oxidized states, respectively, thus constituting a supramolecular AND logic gate.  相似文献   

9.
A solid‐state fluorescent host system was created by self‐assembly of a 21‐helical columnar organic fluorophore composed of (1R,2S)‐2‐amino‐1,2‐diphenylethanol and fluorescent 1‐pyrenecarboxylic acid. This host system has a characteristic 21‐helical columnar hydrogen‐ and ionic‐bonded network. Channel‐like cavities are formed by self‐assembly of this column, and various guest molecules can be included by tuning the packing of this column. Moreover, the solid‐state fluorescence of this host system can change according to the included guest molecules. This occurs because of the change in the relative arrangement of the pyrene rings as they adjust to the tuning of the packing of the shared 21‐helical column, according to the size of the included guest molecules. Therefore, this host system can recognize slight differences in molecular size and shape.  相似文献   

10.
The effect of the macrocyclic host, cucurbit[7]uril (CB7), on the photophysical properties of the 2‐(2′‐hydroxyphenyl)benzimidazole (HPBI) dye have been investigated in aqueous solution by using ground‐state absorption and steady‐state and time‐resolved fluorescence measurements. All three prototropic forms of the dye (cationic, neutral, and anionic) form inclusion complexes with CB7, with the largest binding constant found for the cationic form (K≈2.4×106 M ?1). At pH≈4, the appearance of a blue emission band upon excitation of the HPBI cation in the presence of CB7 indicates that encapsulation into the CB7 cavity retards the deprotonation process of the excited cation, and hence reduces its subsequent conversion to the keto form. Excitation of the neutral form (pH≈8.5), however, leads to an increase in the keto form fluorescence, indicating an enhanced excited‐state intramolecular proton‐transfer process for the encapsulated dye. In both the ground and excited states, the two pKa values of the HPBI dye show upward shifts in the presence of CB7. The prototropic equilibrium of the CB7‐complexed dye is represented by a six‐state model, and the pH‐dependent changes in the binding constants have been analyzed accordingly. It has been observed that the calculated pKa values using this six‐state model match well with the values obtained experimentally. The changes in the pKa values in the presence of CB7 have been corroborated with the modulation of the proton‐transfer process of the dye within the host cavity.  相似文献   

11.
A series of thirteen luminescent tetrahedral borate complexes based on the 2‐(2′‐hydroxyphenyl)benzoxazole (HBO) core is presented. Their synthesis includes the incorporation of an ethynyl fragment by Sonogashira cross‐coupling reaction, with the goal of extending the conjugation and consequently redshifting their emission wavelength. Different regioisomers, substituted in the 3‐, 4‐, or 5‐position of the phenolate side of the HBO core, were studied in order to compare their photophysical properties. The complexes were characterized by X‐ray diffraction and NMR, UV/Vis, and emission spectroscopy in solution and in the solid state. In all cases, complexation to boron leads to a donor–acceptor character that impacts their photophysical properties. Complexes with a 3‐ or 5‐substituted fragment display mild to pronounced internal charge transfer (ICT), a feature strengthened by the presence of p‐dibutylaminophenylacetylene in the molecular structure, protonation of the nitrogen atom of which leads to a significant blueshift and an increase in quantum yield. On the contrary, when the ethynyl module is grafted on the 4‐position, narrow, structured, symmetrical absorption/emission bands are observed. Moreover, the fact that protonation has little effect on the emission maximum wavelength reveals singlet excited‐state decay. Solid‐state emission properties reveal a redshift compared to solution, explained by tight packing of the π‐conjugated systems and the high planarity of the dyes. Subsequent connection of these complexes to other photoactive subunits (BODIPY, Boranil) provides dyads in which efficient cascade energy transfer is observed.  相似文献   

12.
A new class of poly(benzyl ether) dendrimers, decorated in their cores with N‐Boc‐protected 1,2‐diphenylethylenediamine groups, were synthesized and fully characterized. It was found that the gelation capability of these dendrimers was highly dependent on dendrimer generation, and the second‐generation dendrimer (R,R)‐G2DPENBoc proved to be a highly efficient organogelator. A number of experiments (SEM, TEM, FTIR spectroscopy, 1H NMR spectroscopy, rheological measurements, UV/Vis absorption spectroscopy, CD, and XRD) revealed that these dendritic molecules self‐assembled into elastically interpenetrating one‐dimensional nanostructures in organogels. The hydrogen bonding, π–π, and solvophobic interactions were found to be the main driving forces for formation of the gels. Most interestingly, these dendritic organogels exhibited smart multiple‐stimulus‐responsive behavior upon exposure to environmental stimuli such as temperature, anions, and mechanical stress.  相似文献   

13.
A pH‐controlled delivery system based on mesoporous silica nanoparticles (MSNs) was constructed for dual‐cargo selective release. To achieve a better controlled‐release effect, a modified sol–gel method was employed to obtain MSNs with tunable particle and pore sizes. The systems selectively released different kinds of cargo when stimulated by different pH values. At the lower pH value (pH 2.0) only one kind of cargo was released from the MSNs, whereas at a higher pH value (pH 7.0) only the other kind of cargo was released from the MSNs. The multi‐cargo delivery system has brought the concept of selective release to new advances in the field of functional nanodevices and allows more accurate and controllable delivery of specific cargoes, which is expected to have promising applications in nanomedicine.  相似文献   

14.
Rotaxane‐based molecular shuttles are often operated using low‐symmetry axles and changing the states of the binding stations. A molecular shuttle capable of directional shuttling of an acid‐responsive cone‐like macrocycle on a single‐state symmetric dumbbell axle is now presented. The axle contains three binding stations: one symmetric di(quaternary ammonium) station and two nonsymmetric phenyl triazole stations arranged in opposite orientations. Upon addition of an acid, the protonated macrocycle shuttles from the di(quaternary ammonium) station to the phenyl triazole binding station closer to its butyl groups. This directional shuttling presumably originates from charge repulsion and an orientational binding preference between the cone‐like cavity and the nonsymmetric phenyl triazole station. This mechanism for achieving directional shuttling by manipulating only the wheels instead of the tracks is new for artificial molecular machines.  相似文献   

15.
16.
17.
18.
A new class of poly(aryl ether) dendritic ligands containing a pyridine functionality at the focal point and the corresponding AgI complexes through metal–ligand coordination were designed, synthesized, and fully characterized. Compared with the dendritic ligands, the corresponding dendritic complexes exhibited much better gelation ability for various organic solvents at very low critical gelation concentrations. The gel–sol phase transition temperatures and morphologies could be finely tuned by binding silver ion to the ligand. A preliminary study revealed that multiple noncovalent interactions, such as AgI–pyridine coordination, solvophobic interaction, and π–π stacking, synergistically enable the formation of stable metallogels. Interestingly, these metallogels could intelligently respond to multiple external stimuli including temperature, chemicals, and shear stress, leading to gel–sol phase transitions. In addition, these dendritic metallogels were successfully applied as templates for the in situ formation and stabilization of silver nanoparticles without the use of any chemical reducing/stabilizing agents.  相似文献   

19.
This paper describes the behavior of various generations of polyglycerol dendrimers that contain a perfluorinated shell. The aggregation in organic solvents is based on supramolecular fluorous–fluorous interactions, which can be described by means of 19F NMR spectroscopy. In order to study the interaction and aggregation phenomena of dendrimers with perfluorinated shell and perfluoro‐tagged guest molecules we investigated [G3.5]‐dendrimer with a perfluorinated shell in the presence of perfluoro‐tagged disperse red. Noteworthy, the interaction intensities varied in an unexpected manner depending on the equivalents of perfluoro‐tagged guest molecules added to the dendrimers in solution which then formed supramolecular complexes based on fluorous–fluorous interactions. We found that these complexes aggregated around residual air in the solvent to form stable micron‐sized bubbles. Their sizes correlated with the interaction intensities measured for certain dendrimer–guest molecule ratios. Degassing of the solutions led to a quasi phase separation between organic and fluorous phase, whereby the dendrimers formed the fluorous phases. Regassing the sample with air afforded bubbles of the initial size again.  相似文献   

20.
We report on a molecularly tailored 1:1 donor–acceptor (D‐A) charge‐transfer (CT) cocrystal that manifests strongly red‐shifted CT luminescence characteristics, as well as noteworthy reconfigurable self‐assembling behaviors. A loosely packed molecular organization is obtained as a consequence of the noncentrosymmetric chemical structure of molecule A1 , which gives rise to considerable free volume and weak intermolecular interactions. The stacking features of the CT complex result in an external stimuli‐responsive molecular stacking reorganization between the mixed and demixed phases of the D‐A pair. Accordingly, high‐contrast fluorescence switching (red?blue) is realized on the basis of the strong alternation of the electronic properties between the mixed and demixed phases. A combination of structural, spectroscopic, and computational studies reveal the underlying mechanism of this stimuli‐responsive behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号