首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Understanding the roles of various parameters in orchestrating the preferential chiral molecular organization in supramolecular self‐assembly processes is of great significance in designing novel molecular functional systems. Cyclic dipeptide (CDP) chiral auxiliary‐functionalized naphthalenediimides (NCDPs 1 – 6 ) have been prepared and their chiral self‐assembly properties have been investigated. Detailed photophysical and circular dichroism (CD) studies have unveiled the crucial role of the solvent in the chiral aggregation of these NCDPs. NCDPs 1 – 3 form supramolecular helical assemblies and exhibit remarkable chiroptical switching behaviour (M‐ to P‐type) depending on the solvent composition of HFIP and DMSO. The strong influence of solvent composition on the supramolecular chirality of NCDPs has been further corroborated by concentration and solid‐state thin‐film CD studies. The chiroptical switching between supramolecular aggregates of opposite helicity (M and P) has been found to be reversible, and can be achieved through cycles of solvent removal and redissolution in solvent mixtures of specific composition. The control molecular systems (NCDPs 4 – 6 ), with an achiral or D ‐isomer second amino acid in the CDP auxiliary, did not show chiral aggregation properties. The substantial roles of hydrogen bonding and π–π interactions in the assembly of the NCDPs have been validated through nuclear magnetic resonance (NMR), photophysical, and computational studies. Quantum chemical calculations at the ab initio, semiempirical, and density functional theory levels have been performed on model systems to understand the stabilities of the right (P‐) and left (M‐) handed helical supramolecular assemblies and the nature of the intermolecular interactions. This study emphasizes the role of CDP chiral auxiliaries on the solvent‐induced helical assembly and reversible chiroptical switching of naphthalenediimides.  相似文献   

2.
Carotenoid microcrystals, extracted from cells of carrot roots and consisting of 95 % of achiral β‐carotene, exhibit a very intense chiroptical (ECD and ROA) signal. The preferential chirality of crystalline aggregates that consist mostly of achiral building blocks is a newly observed phenomenon in nature, and may be related to asymmetric information transfer from the chiral seeds (small amount of α‐carotene or lutein) present in carrot cells. To confirm this hypothesis, we synthesized several model aggregates from various achiral and chiral carotenoids. Because of the sergeant‐and‐soldier behavior, a small number of chiral sergeants (α‐carotene or astaxanthin) force the achiral soldier molecules (β‐ or 11,11′‐[D2]‐β‐carotene) to jointly form supramolecular assemblies of induced chirality. The chiral amplification observed in these model systems confirmed that chiral microcrystals appearing in nature might consist predominantly of achiral building blocks and their supramolecular chirality might result from the co‐crystallization of chiral and achiral analogues.  相似文献   

3.
Polymerization-induced chiral self-assembly(PICSA)is an efficient strategy that not only allows the construction of the supramolecular chiral assemblies in a controlled manner but also can regulate the morphology in situ.Herein,a series of azobenzene-containing block copolymer(Azo-BCP)assemblies with tunable morphologies and supramolecular chirality were obtained through the PICSA strategy.The supramolecular chirality of Azo-BCP assemblies could be regulated by carbon dioxide(CO2)stimulus,and completely recovered by bubbling with Ar.A reversible morphology transformation and chiroptical switching process could also be achieved by the alternative 365 nm UV light irradiation and heatingcooling treatment.Moreover,the supramolecular chirality is thermo-responsive and a reversible chiral-achiral switching was successfully realized,which can be reversibly repeated for at least five times.This work provides a feasible strategy for constructing triple stimuli-responsive supramolecular chiral nano-objects in situ.  相似文献   

4.
We prepared novel cholesterol-appended squaraine dye 1 and model squaraine dye 2 and investigated their aggregation behavior in solution and thin films using photophysical, chiroptical, and microscopic techniques. Investigations on the dependence of aggregation on solvent composition (good/poor, CHCl3/CH3CN) demonstrated that squaraine dye 1 forms two novel H-type chiral supramolecular assemblies with opposite chirality at different good/poor solvent compositions. Model compound 2 formed J-type achiral assemblies under similar conditions. The supramolecular assembly of 1 observed at lower fractions of the poor solvent could be assigned to the thermodynamically stable form, while a kinetically controlled assembly is formed at higher fractions of the poor solvent. This assignment is evidenced by temperature- and concentration-dependent experiments. With increasing temperature, the chirality of the kinetically controlled aggregate was lost and, on cooling, the aggregate with the opposite chirality was formed. On further heating and cooling the aggregates thus formed resulted in no significant changes in chirality, that is they are thermodynamically stable. Similarly, at lower concentrations, the thermodynamically stable form exists, but at higher concentration aggregation was found to proceed with kinetic control. Based on these observations it can be assumed that formation of the kinetically controlled assembly might be largely dependent on the presence of the nonpolar cholesterol moiety as well as the amount of poor solvent present. However, under solvent-free conditions, structurally different aggregates were observed when drop cast from solutions containing monomer, whereas a left-handed CD signal corresponding to the thermodynamically controlled assemblies was observed from pre-aggregated solutions.  相似文献   

5.
Nanosupramolecular assemblies with controlled topological features have inventive applications in fundamental studies and material manufacturing. Herein, a variety of morphologically interesting aggregates have been constructed using the supramolecular modulation with bipyridinium‐modified diphenylalanine derivative (BP‐FF). Benefiting from the high binding affinity of bipyridinium group with four different macrocyclic receptors, namely cucurbit[7]uril, cucurbit[8]uril, pillar[5]arene, and tetrasulfonated crown ether, we have succeeded in tuning the topological aggregates of BP‐FF from fine nanofibers to nanorods, octahedron‐like nanostructure, helical nanowires, and rectangular nanosheets without any tedious chemical modification. This supramolecular approach may provide us a powerful method to construct well‐defined nanostructures with different morphologies that can be conveniently controlled by facile host–guest interactions.  相似文献   

6.
Precise control over the chirality and morphologies of polymer assemblies, a remaining challenge for both chemists and materials scientists, is receiving ever-increasing attention in the recent years. Herein, we report the subtle manipulation of the achiral spacers from the chiral stereocenter to the azobenzene (Azo) unit, of which the chiroptical consistency or chiroptical inversion of self-assemblies could be successfully controlled and present “two-fold” odd-even effect. Furthermore, morphological transitions from 0D spherical micelles, 1D worms, and nanowires to 3D vesicles, spindle- and dumbbell-shaped vesicles were also unexpectedly found to exhibit odd-even correlations. These observations were collectively elucidated by mesomorphic properties, stacking modes, chiroptical dynamics, and stimuli-responsive behaviors. Negligible modifications to the spacer structures can enable remarkable modulation of supramolecular chirality and anisotropic topologies in polymer assemblies, which is of great significance for the design of complex chiral functional polymers.  相似文献   

7.
Hierarchical supramolecular chiral liquid‐crystalline (LC) polymer assemblies are challenging to construct in situ in a controlled manner. Now, polymerization‐induced chiral self‐assembly (PICSA) is reported. Hierarchical supramolecular chiral azobenzene‐containing block copolymer (Azo‐BCP) assemblies were constructed with π–π stacking interactions occurring in the layered structure of Azo smectic phases. The evolution of chirality from terminal alkyl chain to Azo mesogen building blocks and further induction of supramolecular chirality in LC BCP assemblies during PICSA is achieved. Morphologies such as spheres, worms, helical fibers, lamellae, and vesicles were observed. The morphological transition had a crucial effect on the chiral expression of Azo‐BCP assemblies. The supramolecular chirality of Azo‐BCP assemblies destroyed by 365 nm UV irradiation can be recovered by heating–cooling treatment; this dynamic reversible achiral–chiral switching can be repeated at least five times.  相似文献   

8.
The induced aggregation of achiral building blocks by a chiral species to form chiral aggregates with memorized chirality has been observed for a number of systems. However, chiral memory in isolated aggregates of achiral building blocks remains rare. One possible reason for this discrepancy could be that not much is understood in terms of designing these chiral aggregates. Herein, we report a strategy for creating such isolable chiral aggregates from achiral building blocks that retain chiral memory after the facile physical removal of the chiral templates. This strategy was used for the isolation of chiral homoaggregates of neutral achiral π‐conjugated carboxylic acids in pure aqueous solution. Under what we have termed an “interaction–substitution” mechanism, we generated chiral homoaggregates of a variety of π‐conjugated carboxylic acids by using carboxymethyl cellulose (CMC) as a mediator in acidic aqueous solutions. These aggregates were subsequently isolated from the CMC templates whilst retaining their memorized supramolecular chirality. Circular dichroism (CD) spectra of the aggregates formed in the acidic CMC solution exhibited bisignated exciton‐coupled signals of various signs and intensities that were maintained in the isolated pure homoaggregates of the achiral π‐conjugated carboxylic acids. The memory of the supramolecular chirality in the isolated aggregates was ascribed to the substitution of COOH/COOH hydrogen‐bonding interaction between the carboxylic acid groups within the aggregates for the hydrogen‐bonding interactions between the COOH groups of the building blocks and the chiral templates. We expect that this “interaction–substitution” procedure will open up a new route to isolable pure chiral aggregates from achiral species.  相似文献   

9.
Broadly useful chiroptical enantiomeric excess (ee) sensing remains challenging and typically involves carefully designed molecular receptors or supramolecular assemblies. Herein, we report on the enantioselective sensing of 35 amino acids, amino phosphonic acids, hydroxy acids, amino alcohols, and diamines with an auxiliary‐free cobalt probe. Chiroptical analysis of the enantiomeric composition and concentration of minute sample amounts was achieved with high accuracy by using earth‐abundant cobalt salts and hydrogen peroxide as the oxidant. Despite the absence of an auxiliary ligand, the cobalt assay is applicable to aromatic and aliphatic compounds and yields strong CD signals at high wavelengths. This method obviates the general prerequisite for chromophoric metal ligands to generate chiroptical signals through ECCD (exciton‐coupled circular dichroism) effects or through analyte‐to‐ligand chirality induction, and it offers operational simplicity, cost efficiency, waste reduction, and speed.  相似文献   

10.
Supramolecular chirality, generated by the asymmetric assembly of chiral or achiral molecules, has attracted intense study owing to its potential to offer insights into natural biological structures and its crucial roles in advanced materials. The optical activity and stacking pathway of building molecules both greatly determine the chirality of the whole supramolecular structure. The flexibility of supramolecular structures makes their chirality easy to modulate through abundant means. Adjustment of the molecular structure or packing mode, or external stimuli that act like a finger gently pushing toy bricks, can greatly change the chirality of supramolecular assemblies. The dynamic regulation of chiral nanostructures on the intramolecular, intermolecular, and external levels could be regarded as the modulatory essence in numerous strategies, however, this perspective is ignored in most reviews in the literature. Herein, therefore, we focus on the ingenious dynamic modulation of chiral nanostructures by these factors. Through dynamic modulation with changes in chiroptical spectroscopy and electron microscopy, the mechanism of formation of supramolecular chirality is also elaborated.  相似文献   

11.
A chiral regioregular polythiophene (PT), poly[3-[4-((R)-4-ethyl-2-oxazolin-2-yl)phenyl]thiophene] (poly-1), forms chiral aggregates which exhibit a unique induced circular dichroism (ICD) in the pi-pi transition region derived from the supramolecular chirality in the presence of various poor solvents or metal salts in chloroform. We report here that the chirality of such supramolecular aggregates can be switched ("on" and "off") through electron transfer. We have found that upon the addition of copper(II) trifluoromethanesulfonate [Cu(OTf)(2)] to the chiral aggregates of poly-1 in a chloroform-acetonitrile mixture, the ICD disappears because of the oxidative doping of the poly-1 main chain, while a further addition of amines such as triethylenetetramine (TETA) induces undoping of the poly-1 which results in the reappearance of the ICDs. Therefore, the supramolecular chirality of the poly-1 assemblies was reversibly controlled by the addition or removal of an electron from the poly-1 main chain. This may be the first example of a reversible supramolecular chirality switch on chiral PT aggregates. We investigated the mechanism of the chirality switch through the doping and undoping process on the polymer main chain by means of absorption and CD spectroscopies, ESR, cyclic voltammetry, X-ray diffraction, and AFM measurements.  相似文献   

12.
Hydrodynamic forces in stirred solutions induce chirality in some supramolecular species of J‐aggregates, as detected at the level of the electronic transition. However, the mechanism that explains the phenomenon remains to be elucidated, although the basic effect of hydrodynamic gradients of the shear rate is most probably the folding or bending of the nanoparticles in solution. Herein, we demonstrate a correlation between chiral flows in different regions of circular and square stirred cuvettes and the emergence of true circular dichroism (CD). The results show that chaotic flows lead to a racemic mixture of chiral shaped supramolecular species, and vortical flows to scalemic mixtures. In a magnetically stirred flask the descending and ascending flows are of different chiral sign and the CD reading depends on the weighting of these two flows of inverse chiral sign. The effect of the gradient of shear rates of the flows leading to chiral shape objects depends on the shape of the cuvette, which suggests that the flask shape and the controlled addition of reagents in defined regions of the stirred solutions may exert a control in self‐assembly processes.  相似文献   

13.
Natural anthocyanidin 3,5-diglucosides show exciton coupling type of CD in neutral aqueous solutions, indicating the chiroptical stacking of anthocyanidin chromophores. A minor change of substituents on the anthocyanidin alters the chiral direction of stacking. Commelinin also consists of such chiroptically stacked molecules.  相似文献   

14.
Chirality transfer from chiral molecules to assemblies is of vital importance to the design of functional chiral materials. In this work, selective co-assembly behaviors between chiral molecules and an achiral luminophore, potentially driven by the intermolecular salt-bridge type hydrogen bonds are reported. Cyano-substituted tetrakis(arylthio)benzene carboxylic acid ( TA ) served as the luminophore and hydrogen bond donors, which underwent co-assembly with different chiral amines. It was found that structures of chiral amines affect the chirality transfer and the properties of co-assemblies due to effects on hydrogen bonds and stacking pattern. Only in specific co-assemblies, the chiroptical properties occurred at both ground state and excited states based on the emerged Cotton effects and circularly polarized luminescence (CPL) signals, revealing that the chirality was successfully transferred from molecular level to supramolecular level. In addition, accurate quantitative examination of chiral amines was realized by circular dichroism (CD) spectra. This work demonstrates the characteristic chirality response and transfer through co-assembly, providing a potential method to develop smart chiroptical materials.  相似文献   

15.
Despite the remarkable progress made in controllable self‐assembly of stimuli‐responsive supramolecular polymers (SSPs), a basic issue that has not been consideration to date is the essential binding site. The noncovalent binding sites, which connect the building blocks and endow supramolecular polymers with their ability to respond to stimuli, are expected to strongly affect the self‐assembly of SSPs. Herein, the design and synthesis of a dual‐stimuli thermo‐ and photoresponsive Y‐shaped supramolecular polymer (SSP2) with two adjacent β‐cyclodextrin/azobenzene (β‐CD/Azo) binding sites, and another SSP (SSP1) with similar building blocks, but only one β‐CD/Azo binding site as a control, are described. Upon gradually increasing the polymer solution temperature or irradiating with UV light, SSP2 self‐assemblies with a higher binding‐site distribution density; exhibits a flower‐like morphology, smaller size, and more stable dynamic aggregation process; and greater controllability for drug‐release behavior than those observed with SSP1 self‐assemblies. The host–guest binding‐site‐tunable self‐assembly was attributed to the positive cooperativity generated among adjacent binding sites on the surfaces of SSP2 self‐assemblies. This work is beneficial for precisely controlling the structural parameters and controlled release function of SSP self‐assemblies.  相似文献   

16.
Single‐handed helical silica nanotubes containing chiral organic self‐assemblies were prepared by using a supramolecular templating approach. After carbonization and the removal of the silica, single‐handed helical carbonaceous nanotubes that contained twisted carbonaceous nanoribbons were obtained. It is believed that the nanotubes formed as a result of the adsorption of low‐molecular‐weight gelators. The twisted nanoribbons were formed because of the carbonization of the organic self‐assemblies. The samples were characterized by using field‐emission scanning electron microscopy, transmission electron microscopy, X‐ray diffraction, Raman spectroscopy, and circular dichroism. For the samples carbonized at 900 °C for 3.0 h, a partially graphitized structure was identified. The circular dichroism (CD) spectra indicated that the twisted nanoribbons exhibited optical activity. The CD spectrum was simulated by using time‐dependent density functional theory. The results suggested that the CD signals originated from the chiral stacking of aromatic rings.  相似文献   

17.
The design and fabrication of quantum dots (QDs) with circularly polarized luminescence (CPL) has been a great challenge in developing chiroptical materials. We herein propose an alternative to the use of chiral capping reagents on QDs for the fabrication of CPL‐active QDs that is based on the supramolecular self‐assembly of achiral QDs with chiral gelators. Full‐color‐tunable CPL‐active QDs were obtained by simple mixing or gelation of a chiral gelator and achiral 3‐mercaptopropionic acid capped QDs. In addition, the handedness of the CPL can be controlled by the supramolecular chirality of the gels. Moreover, QDs with circularly polarized white light emission were fabricated for the first time by tuning the blending ratio of colorful QDs in the gel. The chirality transfer in the co‐assembly of the achiral QDs with the gelator and the spacer effect of the capping reagents on the QD surface are also discussed. This work provides new insight into the design of functional chiroptical materials.  相似文献   

18.
A novel amphiphilic dendron ( AZOC8GAc ) with three l ‐glutamic acid units and an azobenzene moiety covalently linked by an alkyl spacer has been designed. The compound formed hydrogels with water at very low concentration and self‐assembled into chiral‐twist structures. The gel showed a reversible macroscopic volume phase transition in response to pH variations and photo‐irradiation. During the photo‐triggered changes, although the gel showed complete reversibility in its optical absorptions, only an incomplete chiroptical property change was achieved. On the other hand, the dendron could form a 1:1 inclusion complex through a host–guest interaction with α‐cyclodextrin (α‐CD), designated as supra‐dendron gelator AZOC8GAc/α‐CD . The supra‐dendron showed similar gelation behavior to that of AZOC8GAc , but with enhanced photoisomerization‐transition efficiency and chiroptical switching capacity, which was completely reversible in terms of both optical and chiroptical performances. The self‐assembly of the supra‐dendron is a hierarchical or multi‐supramolecular self‐assembling process. This work has clearly illustrated that the hierarchical and multi‐supramolecular self‐assembling system endows the supramolecular nanostructures or materials with superior reversible optical and chiroptical switching.  相似文献   

19.
The self-assembly of guanosine-5'-hydrazide G-1 in D(2)O, in the presence and absence of sodium cations, has been investigated by chiroptical techniques: electronic (ECD) and the newly introduced vibrational (VCD) circular dichroism spectroscopy. Using a combination of ECD and VCD with other methods such as IR, electron microscopy, and electrospray ionization mass spectrometry (ESI-MS) it was found that G-1 produces long-range chiral aggregates consisting of G-quartets, (G-1)(4), subsequently stacked into columns, [(G-1)(4)](n), induced by binding of metal cations between the (G-1)(4) species. This process, accompanied by gelation of the sample, is highly efficient in the presence of an excess of sodium cations, leading to aggregates with strong quartet-quartet interaction. Thermally induced conformational changes and conformational stability of guanosine-5'-hydrazide assemblies were studied by chiroptical techniques and the melting temperature of the hydrogels formed was obtained. The temperature-dependent experiments indicate that the long-range supramolecular aggregates are dissociated by increasing temperature into less ordered species, monomers, or other intermediates in equilibrium, as indicated by MS experiments.  相似文献   

20.
Hierarchical supramolecular chiral liquid-crystalline (LC) polymer assemblies are challenging to construct in situ in a controlled manner. Now, polymerization-induced chiral self-assembly (PICSA) is reported. Hierarchical supramolecular chiral azobenzene-containing block copolymer (Azo-BCP) assemblies were constructed with π–π stacking interactions occurring in the layered structure of Azo smectic phases. The evolution of chirality from terminal alkyl chain to Azo mesogen building blocks and further induction of supramolecular chirality in LC BCP assemblies during PICSA is achieved. Morphologies such as spheres, worms, helical fibers, lamellae, and vesicles were observed. The morphological transition had a crucial effect on the chiral expression of Azo-BCP assemblies. The supramolecular chirality of Azo-BCP assemblies destroyed by 365 nm UV irradiation can be recovered by heating–cooling treatment; this dynamic reversible achiral–chiral switching can be repeated at least five times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号