首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As a result of detailed mechanistic and kinetic studies, we have proposed that PdX2‐catalyzed oxidative coupling of o‐alkynylanilines 1 with terminal alkynes 2 under aerobic conditions is initiated by aminopalladation of 1 followed by ligand exchange of the resulting σ‐indolylpalladium(II) complex with 2 , reductive elimination and N‐demethylation. Side reactions associated with intermediates on the way to 2,3‐disubstituted indoles 3 were identified, and the roles of acetate and iodide in channeling the reaction towards the desired product were established. Based on kinetic and spectroscopic studies, the soluble iodide‐ligated Pd0 species was proposed to be the resting state of the catalyst and its oxidation to active PdII species was the turnover‐limiting step. Catalytic conditions with low loading of Pd(OAc)2 (0.0005 to 0.001 equiv) were subsequently developed.  相似文献   

2.
The complete assignment of the 1H and 13C NMR spectra of various 2‐acetamido‐3‐mercapto‐3‐methyl‐N‐aryl‐butanamides and 2‐acetamide‐3‐methyl‐3‐nitrososulfanyl‐N‐aryl‐butanamides with p‐methoxy, o‐chloro and m‐chloro substituents is reported. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
Triethylgermylation of sulfacetamide occurs on the sulfonamido nitrogen in competition with the 1,2 addition of the starting triethylgermyl dimethylamine on the carbonyl group. Thermal decomposition in the presence of dimethylamine yields N‐triethylgermylsulfanilamide. Stable 1:1 sulfacetamide–DBU and 1:1 sulfacetamide–Et3N complexes were isolated and fully characterized in the course of dehydrochlorination reactions. o‐Sulfonamidophenylamine yields N,N′‐bis‐triethylgermylated derivatives, whereas o‐(N,N‐dimethylsulfonamido)phenylamine leads to monogermylated compounds. The N‐dimethylaminodimesitylgermyl derivative is thermally stable. Dehydrohalogenation of the N‐dimesitylfluorogermyl compound leads to the thermally stable but water sensitive N‐[o‐(N′,N′‐dimethylsulfonamido)phenyl]‐N‐dimesitylgermaimine. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

4.
A series of new benzimidazolium chlorides bearing N,N′‐benzyl, 2,4,6‐trimethylbenzyl and 2,4,6‐triisopropylbenzyl substituents have been designed and synthesized from various o‐phenylenediamines. Subsequently, corresponding Cu‐based N‐heterocyclic carbenes (NHCs) were generated in situ in the reaction medium which represents a new application of NHCs exploiting distinct catalytic property towards intermolecular cyclization reaction cascade for the synthesis of 2‐aryl‐3‐(arylethynyl)quinoxalines from o‐phenylenediamines and terminal alkynes. The outcome of the cyclization reaction product depends upon the N,N′‐substituents present on the benzimidazolium chlorides.  相似文献   

5.
Regio‐ and enantioselective synthesis of N‐allylindoles was realized through an iridium‐catalyzed asymmetric allylic amination reaction with 2‐alkynylanilines and subsequent transition‐metal‐catalyzed cyclization reactions. The highly enantioenriched allylic amines prepared from Ir‐catalysis were treated with catalytic amount of NaAuCl4 ? 2 H2O or PdCl2 providing various substituted N‐allylindoles in excellent yields and enantioselectivities.  相似文献   

6.
The title compounds, the P(3)‐axially and P(3)‐equatorially substituted cis‐ and trans‐configured 8‐benzyl‐3‐fluoro‐2,4‐dioxa‐8‐aza‐3‐phosphadecalin 3‐oxides (=8‐benzyl‐3‐fluoro‐2,4‐dioxa‐8‐aza‐3‐phosphabicyclo[4.4.0]decane 3‐oxides=2‐fluorohexahydro‐6‐(phenylmethyl)‐4H‐1,3,2‐dioxaphosphorino[5,4‐c]pyridine 2‐oxides) were prepared (ee>98%) and fully characterized (Schemes 2 and 3). The absolute configurations were established from that of their precursors, the enantiomerically pure cis‐ and trans‐1‐benzyl‐4‐hydroxypiperidine‐3‐methanols which were unambiguously assigned. Being configuratively fixed and conformationally constrained phosphorus analogues of acetyl γ‐homocholine (=3‐(acetyloxy)‐N,N,N‐trimethylpropan‐1‐aminium), they are suitable probes for the investigation of molecular interactions with acetylcholinesterase. As determined by kinetic methods, all of the compounds are weak inhibitors of the enzyme.  相似文献   

7.
Thermal cyclization reactions of N‐alkyl‐2‐benzylaniline 1a‐d and N‐alkyl‐N′‐phenyl‐o‐phenylenediamine 2a‐b were carried out expecting to get seven‐membered heterocyclic compounds. However, the results show that aside from the formation of the normally expected six‐membered ring products of acridine 5 , anthracene 6 , and phenazine 8 , thermal cyclization of N‐alkyl‐2‐benzylaniline and N‐alkyl‐N′‐phenyl‐o‐phenylenediamine also resulted to the unexpected formation of 2‐phenylindole 3 and 2,3‐diphenylindole 4 , and 2‐phenylbenzimidazole 7 , respectively.  相似文献   

8.
Convergent syntheses of the 9‐(3‐X‐2,3‐dideoxy‐2‐fluoro‐β‐D ‐ribofuranosyl)adenines 5 (X=N3) and 7 (X=NH2), as well as of their respective α‐anomers 6 and 8 , are described, using methyl 2‐azido‐5‐O‐benzoyl‐2,3‐dideoxy‐2‐fluoro‐β‐D ‐ribofuranoside ( 4 ) as glycosylating agent. Methyl 5‐O‐benzoyl‐2,3‐dideoxy‐2,3‐difluoro‐β‐D ‐ribofuranoside ( 12 ) was prepared starting from two precursors, and coupled with silylated N6‐benzoyladenine to afford, after deprotection, 2′,3′‐dideoxy‐2′,3′‐difluoroadenosine ( 13 ). Condensation of 1‐O‐acetyl‐3,5‐di‐O‐benzoyl‐2‐deoxy‐2‐fluoro‐β‐D ‐ribofuranose ( 14 ) with silylated N2‐palmitoylguanine gave, after chromatographic separation and deacylation, the N7β‐anomer 17 as the main product, along with 2′‐deoxy‐2′‐fluoroguanosine ( 15 ) and its N9α‐anomer 16 in a ratio of ca. 42 : 24 : 10. An in‐depth conformational analysis of a number of 2,3‐dideoxy‐2‐fluoro‐3‐X‐D ‐ribofuranosides (X=F, N3, NH2, H) as well as of purine and pyrimidine 2‐deoxy‐2‐fluoro‐D ‐ribofuranosyl nucleosides was performed using the PSEUROT (version 6.3) software in combination with NMR studies.  相似文献   

9.
4‐(Acylamino)‐5‐nitrosopyrimidines react either by a reductive condensation to provide 8‐substituted guanines, or by a Diels–Alder cycloaddition, or an ene reaction, to provide 6‐substituted pteridinones, depending on the nature of the acyl group and the reaction conditions. Experimental details are provided for the transformation of (acylamino)‐nitrosopyrimidines to 8‐substituted guanines, and the scope of the reaction is further demonstrated by transforming the trifluoro acetamide 25 to the 8‐(trifluoromethyl)guanine ( 27 ), and the N,Nbis(nitrosopyrimidinyl)‐dicarboxamide 29 to the (R,R)‐1,2di(guan‐8‐yl)ethane‐1,2‐diol ( 32 ). An intramolecular Diels–Alder reaction of the N‐sorbyl (=N‐hexa‐2,4‐dienoyl) nitrosopyrimidine 10 , followed by a spontaneous elimination to cleave the N,O bond of the initial cycloaddition product provided the pteridinones 14 or 15 , characterized by a (Z)‐ or (E)‐3‐hydroxyprop‐1‐enyl group at C(6). Treatment of 10 with Ph3P led to the C(8)‐penta‐1,3‐dienyl‐guanine 18 . The ene reaction of the N‐crotonyl (=N‐but‐2‐enoyl) nitrosopyrimidine 19 provided the 6‐vinyl‐pteridinone 20a that dimerized readily to 21a , while treatment of 19 with Ph3P led in high yield to 8‐(prop‐1‐enyl)guanine ( 23 ). The structure of the dimer 21 was established by X‐ray analysis of its bis(N,N‐dimethylformamidine) derivative 21b . The crystal structure of the nitroso amide 10 is characterized by two molecules in the centrosymmetric unit cell. Intermolecular H‐bonds connect the amino group to the amide carbonyl and to N(1). The crystalline bis(purine) 30 forms a left‐handed helix with four molecules per turn and a pitch of 30.2 Å.  相似文献   

10.
A novel one‐pot approach for the preparation of 2‐mercaptobenzaldehyde, 2‐mercaptocyclohex‐1‐enecarboxaldehydes and 3‐mercaptoacrylaldehydes [(Z)‐3‐mercapto‐2‐methyl‐3‐phenylacrylaldehyde, 3‐mercapto‐3‐(o‐tolyl)acrylaldehyde)] starting from ortho‐bromobenzaldehyde, 2‐chlorocyclohex‐1‐enecarbaldehydes, (Z)‐3‐chloro‐2‐methyl‐3‐phenylacrylaldehyde and 3‐chloro‐3‐(o‐tolyl)acrylaldehyde is reported. The reaction of sulfur with the Grignard reagent of the acetal for the protection of the aldehyde group affords the title compounds through hydrolysis with dilute hydrochloric acid in high yields.  相似文献   

11.
Reaction of 3‐(2‐methoxyphenyl)‐2‐sulfanylpropenoic acid [H2(o‐mpspa)] with SnPh3OH in the presence of di‐isopropylamine resulted in the formation of the complex [HQ][SnPh3(o‐mpspa)] (where HQ = di‐isopropylammonium cation and o‐mpspa = 3‐(2‐methoxyphenyl)‐2‐sulfanylpropenoato), which was characterized by mass spectrometry and vibrational spectroscopy, as well as by 1H, 13C and 119Sn NMR spectroscopy. The single‐crystal X‐ray structural analysis of the new complex shows a trigonal‐bipyramidal coordination geometry around the Sn atom where o‐mpspa behaves as a bidentate chelating ligand. Dimeric units arise from the existence of N? H…O hydrogen bonds between the NH2 group of the di‐isopropylammonium cation and the oxygen atoms of the two neighbouring carboxylato groups. The bacteriostatic activity of the complex is also reported. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
A series of N‐substituted 1,4‐dihydro‐4‐oxo‐1,8‐naphthyridine‐3‐carboxylate esters has been prepared in two steps from ethyl 2‐(2‐chloronicotinoyl)acetate. Treatment of the β‐ketoester with N,N‐dimethylformamide dimethyl acetal in N,N‐dimethylformamide (DMF) gave a 95% yield of the 2‐dimethylaminomethylene derivative. Subsequent reaction of this β‐enaminone with primary amines in DMF at 120oC for 24 h then afforded the target compounds in 47–82% yields by a tandem SNAr‐addition‐elimination reaction. Synthetic and procedural details as well as a mechanistic rationale are presented.  相似文献   

13.
In poly[aqua(μ3‐benzene‐1,4‐dicarboxylato‐κ5O1,O1′:O1:O4,O4′)[2‐(pyridin‐3‐yl‐κN)‐1H‐benzimidazole]cadmium(II)], [Cd(C8H4O4)(C12H9N3)(H2O)]n, (I), each CdII ion is seven‐coordinated by the pyridine N atom from a 2‐(pyridin‐3‐yl)benzimidazole (3‐PyBIm) ligand, five O atoms from three benzene‐1,4‐dicarboxylate (1,4‐bdc) ligands and one O atom from a coordinated water molecule. The complex forms an extended two‐dimensional carboxylate layer structure, which is further extended into a three‐dimensional network by hydrogen‐bonding interactions. In catena‐poly[[diaquabis[2‐(pyridin‐3‐yl‐κN)‐1H‐benzimidazole]cobalt(II)]‐μ2‐benzene‐1,4‐dicarboxylato‐κ2O1:O4], [Co(C8H4O4)(C12H9N3)2(H2O)2]n, (II), each CoII ion is six‐coordinated by two pyridine N atoms from two 3‐PyBIm ligands, two O atoms from two 1,4‐bdc ligands and two O atoms from two coordinated water molecules. The complex forms a one‐dimensional chain‐like coordination polymer and is further assembled by hydrogen‐bonding interactions to form a three‐dimensional network.  相似文献   

14.
Protocatechuic acid esters (= 3,4‐dihydroxybenzoates) scavenge ca. 5 equiv. of radical in alcoholic solvents, whereas they consume only 2 equiv. of radical in nonalcoholic solvents. While the high radical‐scavenging activity of protocatechuic acid esters in alcoholic solvents as compared to that in nonalcoholic solvents is due to a nucleophilic addition of an alcohol molecule at C(2) of an intermediate o‐quinone structure, thus regenerating a catechol (= benzene‐1,2‐diol) structure, it is still unclear why protocatechuic acid esters scavenge more than 4 equiv. of radical (C(2) refers to the protocatechuic acid numbering). Therefore, to elucidate the oxidation mechanism beyond the formation of the C(2) alcohol adduct, 3,4‐dihydroxy‐2‐methoxybenzoic acid methyl ester ( 4 ), the C(2) MeOH adduct, which is an oxidation product of methyl protocatechuate ( 1 ) in MeOH, was oxidized by the DPPH radical (= 2,2‐diphenyl‐1‐picrylhydrazyl) or o‐chloranil (= 3,4,5,6‐tetrachlorocyclohexa‐3,5‐diene‐1,2‐dione) in CD3OD/(D6)acetone 3 : 1). The oxidation mixtures were directly analyzed by NMR. Oxidation with both the DPPH radical and o‐chloranil produced a C(2),C(6) bis‐methanol adduct ( 7 ), which could scavenge additional 2 equiv. of radical. Calculations of LUMO electron densities of o‐quinones corroborated the regioselective nucleophilic addition of alcohol molecules with o‐quinones. Our results strongly suggest that the regeneration of a catechol structure via a nucleophilic addition of an alcohol molecule with a o‐quinone is a key reaction for the high radical‐scavenging activity of protocatechuic acid esters in alcoholic solvents.  相似文献   

15.
Tris‐o‐semiquinonato cobalt complexes react with a tetrapodal pyridine‐derived ligand to form dinuclear cobalt compounds of general formula (OMP)[CoQ2]2, where OMP = 2,2′‐(pyridine‐2,6‐diyl)bis(N1,N1,N3,N3‐tetramethylpropane‐1,3‐diamine), Q = mono‐ or dianion of 3,6‐di‐tert‐butyl‐o‐benzoquinone (complex 1 ) and it derivatives: 3,6‐di‐tert‐butyl‐4,5‐N,N′‐piperazino‐o‐benzoquinone (complex 2 ), and 3,6‐di‐tert‐butyl‐4‐Cl‐o‐benzoquinone (complex 3 ). Single crystal X‐ray crystallography of 1 and 3 indicates two bis‐quinonato cobalt units bound by an OMP ligand, which acts as a bridge. Each central cobalt atom is chelated by one N1,N1,N3,N3‐tetramethylpropane‐1,3‐diamine and two o‐quinonato fragments. The nitrogen atom of the pyridine ring is uncoordinated. All complexes were characterized by NIR‐IR and EPR spectroscopy, precise adiabatic vacuum calorimetry, and by variable‐temperature magnetic susceptibility measurements. All data indicate a reversible thermally driven redox‐isomeric (valence tautomeric) transformation in the solid state for all complexes.  相似文献   

16.
A green, efficient and convenient N‐heterocyclic carbene‐catalyzed procedure for the synthesis of novel 2,3‐dihydroquinazolin‐4(1H)‐one derivates via condensation of o‐aminonitriles and various carbonyl compounds was described.  相似文献   

17.
In a search for new insect growth regulators with unusual biological properties and different activity spectrum, we thought that the preservation of the bioactive unit and the introduction of 2‐methyl‐3‐(triphenylgermanyl)propoxycarbonyl in Ntert‐butyl‐N,N′‐dibenzoylhydrazine would enhance their larvicidal activities to a significant degree. Therefore, we designed and synthesized N′‐tert‐butyl‐N′‐[2‐methyl‐3‐(triphenylgermanyl)propoxycarbonyl]‐N‐benzoylhydrazine and analogs by two procedures. These novel compounds were characterized by elemental analyses, IR, and 1H NMR. At the same time, Ntert‐butyl‐N‐substitutedbenzoylhydrazines were prepared by a new method, and some reactions involved were studied. The preliminary results indicate that some compounds have inhibitory effects against plant pathogenetic bacteria such as early blight of tomato. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

18.
2‐Alkynylanilines are attractive starting materials in indole synthesis because of their ready availability. Herein, a one‐pot stepwise procedure is reported for efficient construction of multisubstituted oxocino[4,3,2‐cd]indoles from 2‐alkynylanilines and 2‐alkynylbenzaldoximes. The method comprises the oxidative dearomatization of 2‐alkynylanilines, the silver‐catalyzed [3+3] cycloaddition with 2‐alkynylbenzaldoximes, and subsequent thermal radical skeletal rearrangement and aromatization.  相似文献   

19.
In the coordination polymer catena‐poly[[[diaqua[5‐carboxy‐2‐(pyridin‐3‐yl)‐1H‐imidazole‐4‐carboxylato‐κ2N3,O4]lead(II)]‐μ‐5‐carboxy‐2‐(pyridin‐3‐yl)‐1H‐imidazole‐4‐carboxylato‐κ3N3,O4:N2] dihydrate], {[Pb(C10H6N3O4)(H2O)2]·2H2O}n, the two 5‐carboxy‐2‐(pyridin‐3‐yl)‐1H‐imidazole‐4‐carboxylate ligands have different coordination modes, one being terminal and the other bridging. The bridging ligand links PbII cations into one‐dimensional coordination polymer chains. The structure is also stabilized by intra‐ and interchain π–π stacking interactions between the pyridine rings, resulting in the formation of a two‐dimensional network. Extensive hydrogen‐bonding interactions lead to the formation of a three‐dimensional supramolecular network.  相似文献   

20.
N‐Methyl β‐amino acids are generally required for application in the synthesis of potentially bioactive modified peptides and other oligomers. Previous work highlighted the reductive cleavage of 1,3‐oxazolidin‐5‐ones to synthesise N‐methyl α‐amino acids. Starting from α‐amino acids, two approaches were used to prepare the corresponding N‐methyl β‐amino acids. First, α‐amino acids were converted to N‐methyl α‐amino acids by the so‐called ‘1,3‐oxazolidin‐5‐one strategy’, and these were then homologated by the Arndt–Eistert procedure to afford N‐protected N‐methyl β‐amino acids derived from the 20 common α‐amino acids. These compounds were prepared in yields of 23–57% (relative to N‐methyl α‐amino acid). In a second approach, twelve N‐protected α‐amino acids could be directly homologated by the Arndt–Eistert procedure, and the resulting β‐amino acids were converted to the 1,3‐oxazinan‐6‐ones in 30–45% yield. Finally, reductive cleavage afforded the desired N‐methyl β‐amino acids in 41–63% yield. One sterically congested β‐amino acid, 3‐methyl‐3‐aminobutanoic acid, did give a high yield (95%) of the 1,3‐oxazinan‐6‐one ( 65 ), and subsequent reductive cleavage gave the corresponding AIBN‐derived N‐methyl β‐amino acid 61 in 71% yield (Scheme 2). Thus, our protocols allow the ready preparation of all N‐methyl β‐amino acids derived from the 20 proteinogenic α‐amino acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号