首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BN‐embedded oligomers with different pairs of BN units were synthesized by electrophilic borylation. Up to four pairs of BN units were incorporated in the large polycyclic aromatic hydrocarbons (PAHs). Their geometric, photophysical, electrochemical, and Lewis acidic properties were investigated by X‐ray crystallography, optical spectroscopy, and cyclic voltammetry. The B?N bonds show delocalized double‐bond characteristics and the conjugation can be extended through the trans‐orientated aromatic azaborine units. Calculations reveal the relatively lower aromaticity for the inner azaborine rings in the BN‐embedded PAH oligomers. The frontier orbitals of the longer oligomers are delocalized over the inner aromatic rings. Consequently, the inner moieties of the BN‐embedded PAH oligomers are more active than the outer parts. This is confirmed by a simple oxidation reaction, which has significant effects on the aromaticity and the intramolecular charge‐transfer interactions.  相似文献   

2.
A key challenge in the synthesis of diterpenoid alkaloids lies in identifying strategies that rapidly construct their multiply bridged polycyclic skeletons. Existing approaches to these structurally intricate secondary metabolites are discussed in the context of a “bond‐network analysis” of molecular frameworks, which was originally devised by Corey some 40 years ago. The retrosynthesis plans that emerge from a topological analysis of the highly bridged frameworks of the diterpenoid alkaloids are discussed in the context of eight recent syntheses of hetidine and hetisine natural products and their derivatives. This Minireview highlights the extent to which network analyses of the type described here sufficed for designing synthesis plans, as well as areas where they had to be amalgamated with functional group oriented synthetic planning considerations.  相似文献   

3.
A π‐conjugated twelve‐porphyrin tube is synthesized in 32 % yield by a template‐directed coupling reaction that joins together six porphyrin dimers, forming twelve new C? C bonds. The nanotube has two bound templates, enclosing an internal volume of approximately 4.5 nm3. Its UV/Vis/NIR absorption and fluorescence spectra resemble those of a previously reported six‐porphyrin ring, but are red‐shifted by approximately 300 cm?1, reflecting increased conjugation. Ultrafast fluorescence spectroscopy demonstrates extensive excited‐state delocalization. Transfer of electronic excitation from an initially formed state polarized in the direction of the nanotube axis (z axis) to an excited state polarized in the xy plane occurs within 200 fs, resulting in a negative fluorescence anisotropy on excitation at 742 nm.  相似文献   

4.
A generic approach to the regiospecific synthesis of halogenated polycyclic aromatics is made possible by the one‐ or two‐directional benzannulation reactions of readily available (ortho‐allylaryl)trichloroacetates (the “BHQ” reaction). Palladium‐catalysed cross‐coupling reactions of the so‐formed haloaromatics enable the synthesis of functionalised polycyclic aromatic hydrocarbons (PAHs) with surgical precision. Overall, this new methodology enables the facile mining of chemical space in search of new electronic functional materials.  相似文献   

5.
Ten examples of unsymmetrically benzannulated, boron‐doped polycyclic aromatic hydrocarbons (B‐PAHs) were prepared by a one‐pot protocol using 4,5‐dichloro‐1,2‐bis(trimethylsilyl)benzene ( 1 ), BBr3, and selected PAHs—among them anthracene, benzo[a ]pyrene, biphenylene, and fluoranthene. After mesitylation at the boron centers, the resulting air‐ and water‐stable products were investigated by 1H/11B{1H}/13C{1H} NMR spectroscopy, X‐ray crystallography, cyclic voltammetry, and UV/Vis absorption/emission spectroscopy. The experiments were augmented by DFT calculations. Most of the B‐PAHs are brightly luminescent (Φ PL up to 90 %) and undergo reversible reduction at moderate half‐wave potentials. The two chloro substituents of 1 are not only mandatory for accomplishing efficient diborylation, but can subsequently be used for Stille‐type coupling reactions to introduce 2‐thienyl moieties. Alternatively, Cl/H exchange is achievable with HSiEt3 in a quantitative, Pd‐catalyzed transformation.  相似文献   

6.
This study presents a new type of negatively curved nanographene (C86H32) that contains an unprecedented pattern of heptagons. A tert‐butylated derivative of C86H32 was successfully synthesized using tetrabenzodipleiadiene as a key building block. This synthesis involved a ring expansion reaction as a key step to form the seven‐membered rings in the framework of tetrabenzodipleiadiene. The single‐crystal structure reveals a saddle‐shaped molecule with a highly bent naphthalene moiety at the center of the polycyclic backbone. As found from the DFT calculations, this aromatic saddle is flexible at room temperature and has a saddle‐shaped geometry as the dominant conformation. The DFT calculations along with experimental results show that the attachment of t‐butyl groups to the central tetrabenzodipleiadiene moiety of nanographene C86H32 can stabilize the saddle conformation and make this nanographene less flexible.  相似文献   

7.
8.
Two new nanovehicles that have extended aromatic platforms as the cargo zones have been obtained. Two strategies were considered for the formation of the perylene core from two naphthalene precursors. The first was based on a Scholl‐type reaction involving an oxidant, and the second used a brominated derivative to perform a homocoupling reaction. The first strategy failed under diverse coupling conditions in the presence of several strong oxidants. Nevertheless, the use of CoF3 in trifluoroacetic acid triggered a dimerization reaction between two ester groups of one molecule and the naphthalene unit of another, thereby surprisingly yielding a ten‐membered carbon macrocycle. The second strategy encountered a lack of reactivity of the substrate under several homocoupling conditions. The dimerization was not easily performed but Ullmann‐type conditions ultimately gave the expected product. The low yield and low solubility of the product encouraged us to modify our initial design. The synthesis of a new chassis that incorporated additional tert‐butyl groups improved the solubility of the molecules and also prevented overcyclization of the aromatic platform by blocking these positions. Some p‐phenylene spacers were also intercalated between the iodine and perylene centers to increase the reactivity of the halide towards coupling reactions. Two new chassis were obtained by Scholl‐type oxidative coupling using FeCl3 as the oxidant. The introduction of four triptycene wheels allowed the formation of the two corresponding nanovehicles.  相似文献   

9.
We describe herein the first synthesis of a new class of anti‐aromatic planar cyclooctatetraenes: the azatrioxa[8]circulenes. This was achieved by treating a suitably functionalised 3,6‐dihydroxycarbazole with 1,4‐benzoquinones or a 1,4‐naphthoquinone. We fully characterised the azatrioxa[8]circulenes by using optical, electrochemical and computational techniques as well as by single‐crystal X‐ray crystallography. The results of a computational study (NICS) suggest that the central planar cyclooctatetraene is anti‐aromatic when the molecules are in neutral or oxidised states (2+), and that the corresponding dianions are aromatic. We discuss the aromatic/anti‐aromatic nature of the planar cyclooctatetraenes and compare them with the isoelectronic tetraoxa[8]circulenes.  相似文献   

10.
A rational synthetic procedure for the preparation of a series of pyrene‐based neutral and dicationic bis‐azole compounds is reported. The method allows the tailored design of pyrene‐based azoles with different substituents at the nitrogen atoms of the heterocycles, for which the relative conformation of the resulting bis‐azoles can be easily controlled. The bis‐azoliums were used for the preparation of the related diplatinum complexes by reaction with [{Pt(ppy)(μ‐Cl)2}2] (ppy=2‐phenylpyridinate). The X‐ray molecular structure of one of the resulting compounds, a diplatinum(II) bis(N‐heterocyclic carbene) complex, is described. Studies on the photophysical properties of all new species are described. The emission of the bis‐azole‐based compounds seems to be independent of their substitution patterns, which basically indicates that physical properties such as solubility, melting point, and viscosity can be fine‐tuned while maintaining the luminescence properties. Finally, the energies associated with the HOMO and LUMO levels suggest that this family provides versatility to match the energy levels of a wide range of host materials, which is important for the preparation of organic light‐emitting devices.  相似文献   

11.
A new set of star‐shaped polycyclic aromatic hydrocarbons (PAHs) based on naphthalene‐fused truxenes, TrNaCn (n=1–4), were synthesized and characterized. The synthesis involved a microwave‐assisted six‐fold Suzuki coupling reaction, followed by oxidative cyclodehydrogenation. Multiple dehydrocyclization products could be effectively isolated in a single reaction, thus suggesting that the oxidative cyclodehydrogenation reaction involved a stepwise ring‐closing process. The thermal, optical, and electrochemical properties and the self‐assembly behavior of the resulting oxidized samples were investigated to understand the impact of the ring‐fusing process on the properties of the star‐shaped PAHs. Distinct bathochromic shift of the absorption maxima (λmax) revealed that the molecular conjugation extended with the stepwise ring‐closing reactions. The optical band‐gap energy of these PAHs varied significantly on increasing the number of fused rings, thereby resulting in readily tunable emissive properties of the resultant star‐shaped PAHs. Interestingly, the generation of rigid “arms” by using perylene analogues caused TrNaC2 and TrNaC3 to show significantly enhanced photoluminescence quantum yields (PLQYs) in solution (η=0.65 and 0.66, respectively) in comparison with those of TrNa and TrNaC1 (η=0.08 and 0.16, respectively). Owing to strong intermolecular interactions, the TrNa precursor was able to self‐assemble into rod‐like microcrystals, which could be facilely identified by the naked eye, whilst TrNaC1 self‐assembled into nanosheets once the naphthalene rings had fused. This study offers a unique platform to gain further insight into—and a better understanding of—the photophysical and self‐assembly properties of π‐extended star‐shaped PAHs.  相似文献   

12.
We present a nitrogen‐containing polycyclic aromatic hydrocarbon (N‐PAH), namely 12‐methoxy‐9‐(4‐methoxyphenyl)‐5,8‐diphenyl‐4‐(pyridin‐4‐yl)pyreno[1,10,9‐h,i,j]isoquinoline (c‐TPE‐ON), which exhibits high quantum‐yield emission both in solution (blue) and in the solid state (yellow). This molecule was unexpectedly obtained by a three‐fold, highly regioselective photocyclodehydrogenation of a tetraphenylethylene‐derived AIEgen. Based on manifold approaches involving UV/Vis, photoluminescence, and NMR spectroscopy as well as HRMS, we propose a reasonable mechanism for the formation of the disk‐like N‐PAH that is supported by density functional theory calculations. In contrast to most PAHs that are commonly used, our system does not suffer from entire fluorescence quenching in the solid state due to the peripheral aromatic rings preventing π–π stacking interactions, as evidenced by single‐crystal X‐ray analysis. Moreover, its rod‐like microcrystals exhibit excellent optical waveguide properties. Hence, c‐TPE‐ON comprises a N‐PAH with unprecedented luminescent properties and as such is a promising candidate for fabricating organic optoelectronic devices. Our design and synthetic strategy might lead to a more general approach to the preparation of solution‐ and solid‐state luminescent PAHs.  相似文献   

13.
A series of hydrophilic per‐6‐thio‐6‐deoxy‐γ‐cyclodextrins (CDs) were synthesized from per‐6‐iodo‐6‐deoxy‐γ‐CD. These new hosts are able to solubilize polycyclic aromatic guests in aqueous solution to much higher extents than native CDs. Phase‐solubility diagrams were mostly linear in accordance with both 1:1 and 1:2 CD–guest complexes in aqueous solution. The stoichiometry of the inclusion complexes was further investigated by fluorescence spectroscopy, which revealed very pronounced Stokes shifts typical for 1:2 complexes. This finding was further consolidated by quantum mechanical calculations of dimer formation of the guests and space‐filling considerations by using the cross‐sectional areas of the CDs and guests. The calculated dimerization energies correlated well with the binding free energies measured for the 1:2 complexes, and provided the main contribution to the driving force of complexation in the γ‐CD cavity.  相似文献   

14.
The structural features of polycyclic polyether natural products can, in some cases, be traced to their biosynthetic origin. However in case that are less well understood, only biosynthetic pathways that feature dramatic, yet speculative, epoxide‐opening cascades are proposed. We summarize how such epoxide‐opening cascade reactions have been used in the synthesis of polycyclic polyethers (see scheme) and related natural products.

  相似文献   


15.
含吡啶环的芳香醚-噁二唑类化合物的合成及其光谱研究   总被引:2,自引:0,他引:2  
任新娟  王雷  高磊  谢志元  李东风 《有机化学》2009,29(7):1147-1151
为开发新的高强度的有机电致发光材料, 用含烷氧基的取代苯甲酸(2)与2,6-吡啶二甲酰肼(3)在POCl3作用下, “一锅煮”法合成6个结构对称的含吡啶环的芳香醚-噁二唑4a~4f. 通过MS, IR, 1H NMR, 元素分析等手段对其结构进行了表征. 化合物的荧光性能测定结果显示此类化合物具有良好的荧光性, 其荧光发射波长均在347~507 nm范围内, 最大荧光发射波长在384 nm附近处, 且荧光强度较强. 在芳环上引入5-Br基团(4e, 4f), 化合物的荧光发射波长发生红移, 荧光强度有所减弱. 以硫酸奎宁作参比, 测定6个目标产物的荧光量子产率, 5-Br基团的引入对荧光量子产率没有明显影响. 同时讨论了代表性产物4a在不同溶剂中最大荧光激发波长处的荧光量子产率, 发现溶剂极性对该类化合物的荧光量子产率基本没有影响.  相似文献   

16.
Atisane‐type diterpenoids are the principal constituent of tetracyclic C20‐diterpenoids, widely isolated from the plant kingdom with varying degrees of structural complexity and pharmacological activity. The tetracarbocyclic system with the unique bicyclo[2.2.2]octane skeleton of this natural product family has generated interest within the synthetic community. Divergent total synthesis is an effective tactic to synthesize several atisane‐type diterpenoids using structural interconversion from a common intermediate. This account summarizes the divergent total synthesis of atisane‐type diterpenoids.  相似文献   

17.
Polycyclic azoniahetarenes were employed to determine the effect of the structure of unsubstituted polyaromatic ligands on their quadruplex‐DNA binding properties. The interactions of three isomeric diazoniadibenzo[b,k]chrysenes ( 4 a – c ), diazoniapentaphene ( 5 ), diazoniaanthra[1,2‐a]anthracene ( 6 ), and tetraazoniapentapheno[6,7‐h]pentaphene ( 3 ) with quadruplex DNA were examined by DNA melting studies (FRET melting) and fluorimetric titrations. In general, penta‐ and hexacyclic azoniahetarenes bind to quadruplex DNA (Kb≈106 M ?1) even in the absence of additional functional side chains. The binding modes of 4 a – c and 3 were studied in more detail by ligand displacement experiments, isothermal titration calorimetry, and CD and NMR spectroscopy. All experimental data indicate that terminal π stacking of the diazoniachrysenes to the quadruplex is the major binding mode; however, because of different electron distributions of the π systems of each isomer, these ligands align differently in the binding site to achieve ideal binding interactions. It is proposed that tetraazonia ligand 3 binds to the quadruplex by terminal stacking with a small portion of its π system, whereas a significant part of the bulky ligand most likely points outside the quadruplex structure, and is thus partially placed in the grooves. Notably, 3 and the known tetracationic porphyrin TMPyP4 exhibit almost the same binding properties towards quadruplex DNA, with 3 being more selective for quadruplex than for duplex DNA. Overall, studies on azonia‐type hetarenes enable understanding of some parameters that govern the quadruplex‐binding properties of parent ligand systems. Since unsubstituted ligands were employed in this study, complementary and cooperative effects of additional substituents, which may interfere with the ligand properties, were eliminated.  相似文献   

18.
In this work, we report on the reduction of tetracyanoquinodimethane (TCNQ) with dicationic complexes of guanidinyl‐functionalized aromatic (GFA) electron donors. In contrast to reduction with free GFAs, milder reduction conditions were achieved, and this led to semiconducting materials with extended TCNQ π stacking. The charge on the TCNQ units was estimated from the structural data obtained by single‐crystal X‐ray diffraction analysis and from IR spectroscopic data. The electrical conductivity was studied and the activation energy of the semiconducting materials was estimated from the temperature dependence of the conductivity.  相似文献   

19.
A detailed study of the geometry, aromatic character, electronic and magnetic properties for a series of positively charged N-doped polycyclic aromatic hydrocarbons (PAHs) was performed. Magnetic properties of the examined molecules were analyzed by means of the magnetically induced current density calculated using the diamagnetic-zero version of the continuous transformation of origin of current density (CTOCD-DZ) method. The comparative study of the local aromaticity of the studied molecules was performed using several different indices: energy effect (ef), harmonic oscillator model of aromaticity (HOMA) index, six centre delocalization index (SCI) and nucleus independent chemical shifts (NICS). The presence of N-atoms in the inner rings was found to cause a planarity distortion in the studied N-doped systems. The geometric changes and charged nature of the studied N-doped systems do not significantly influence the current density and the local aromaticity distribution in comparison with the corresponding parent benzenoid hydrocarbons. The present study demonstrates how quantum chemical calculations can be used for rational design of novel PAHs and for fine tuning of their properties.  相似文献   

20.
Herein we show that replacing the two meso carbon atoms of the polycyclic aromatic hydrocarbon (PAH) bisanthene by boron atoms transforms a near‐infrared dye into an efficient blue luminophore. This observation impressively illustrates the impact of boron doping on the frontier orbitals of PAHs. To take full advantage of this tool for the targeted design of organic electronic materials, the underlying structure–property relationships need to be further elucidated. We therefore developed a modular synthesis sequence based on a Peterson olefination, a stilbene‐type photocyclization, and an Si–B exchange reaction to substantially broaden the palette of accessible polycyclic aromatic organoboranes and to permit a direct comparison with their PAH congeners.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号