首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An attempt has been made to design double‐stranded ladder‐like coordination polymers (CPs) of hemidirected PbII. Four CPs, [Pb(μ‐bpe)(O2C‐C6H5)2] ? 2H2O ( 1 ), [Pb2(μ‐bpe)2(μ‐O2C‐C6H5)2(O2C‐C6H5)2] ( 2 ), [Pb2(μ‐bpe)2(μ‐O2C‐p‐Tol)2(O2C‐p‐Tol)2] ? 1.5 H2O ( 3 ) and [Pb2(μ‐bpe)2(μ‐O2C‐m‐Tol)2(O2C‐m‐Tol)2] ( 4 ) (bpe=1,2‐bis(4′‐pyridyl)ethylene), have been synthesised and investigated for their solid‐state photoreactivity. CPs 2 – 4 , having a parallel orientation of bpe molecules in their ladder structures and being bridged by carboxylates, were found to be photoreactive, whereas CP 1 is a linear one‐dimensional (1D) CP with guest water molecules aggregating to form a hydrogen‐bonded 1D structure. The linear strands of 1 were found to pair up upon eliminating lattice water molecules by heating, which led to the solid‐state structural transformation of photostable linear 1D CP 1 into photoreactive ladder CP 2 . In the construction of the double‐stranded ladder‐like structures, the parallel alignment of C?C bonds in 2 – 4 is dictated by the chelating and μ2‐η21 bridging modes of the benzoate and toluate ligands. The role of solvents in the formation of such double‐stranded ladder‐like structures has also been investigated. A single‐crystal‐to‐single‐crystal transformation occurred when 4 was irradiated under UV light to form [Pb2(rctt‐tpcb)(μ‐O2C‐m‐Tol)2(O2C‐m‐Tol)2] ( 5 ).  相似文献   

2.
3.
Two solid‐state structural transformations that occur in a stepwise and a controlled manner are described. A combination of desolvation and cycloaddition reactions has been employed to synthesise a 3D coordination polymer (CP) from 1D CP [Cd(bdc)(4‐spy)2(H2O)]?2 H2O?2 DMF (bdc=1,4‐benzenedicarboxylate, 4‐spy=4‐styrylpyridine) presumably via a 2D layered structure, [Cd2(bdc)2(4‐spy)4]. In the absence of single crystals to follow the course of the photocycloaddition reaction, thermogravimetry, XAFS and NOESY NMR experiments were used to propose the formation of layered and pillared layered structures. Further, the present strategy enables us to synthesise new multidimensional architectures that are otherwise inaccessible by the self‐assembly process.  相似文献   

4.
5.
6.
Mechanochemistry is an effective method for the preparation of multicomponent crystal systems. In the present work, we propose an alternative to the established liquid‐assisted grinding (LAG) approach. Polymer‐assisted grinding (POLAG) is demonstrated to provide a new class of catalysts for improving reaction rate and increasing product diversity during mechanochemical cocrystallization reactions. We demonstrate that POLAG provides advantages comparable to the conventional liquid‐assisted process, whilst eliminating the risk of unwanted solvate formation as well as enabling control of resulting particle size. It represents a new approach for the development of functional materials through mechanochemistry, and possibly opens new routes toward the understanding of the mechanisms and pathways of mechanochemical cocrystal formation.  相似文献   

7.
A [2+2] cycloaddition reaction has been observed in a number of solids. The cyclobutane ring in a photodimerized material can be cleaved into olefins by UV light and heat. The high thermal stability of the metal–organic salt K2SDC (H2SDC=4,4’‐stilbenedicarboxylic acid) has been successfully utilized to investigate the reversible cleavage of a cyclobutane ring. The two polymorphs of K2SDC undergo reversible cyclobutane formation by UV light and cleavage by heat in cycles. Of these, one polymorph retains its single‐crystal nature during the reversible processes. Polymorphs are known to show different physical properties and chemical reactivities. This work reveals that the retention of single‐crystal nature is strongly associated with the packing of molecules, which is controlled by kinetics and thermodynamics. The photoemissive nature of the products makes this as a promising material for photoswitches and optical data storage devices.  相似文献   

8.
A new in‐situ NMR strategy (termed CLASSIC NMR) for mapping the evolution of crystallization processes is reported, involving simultaneous measurement of both liquid‐state and solid‐state NMR spectra as a function of time. This combined strategy allows complementary information to be obtained on the evolution of both the solid and liquid phases during the crystallization process. In particular, as crystallization proceeds (monitored by solid‐state NMR), the solution state becomes more dilute, leading to changes in solution‐state speciation and the modes of molecular aggregation in solution, which are monitored by liquid‐state NMR. The CLASSIC NMR experiment is applied here to yield new insights into the crystallization of m‐aminobenzoic acid.  相似文献   

9.
Silicon‐based nanocomposites with slitlike nanopores were prepared by heating a mixture of layered CaSi2 and NiCl2. The formation mechanism is based on a solid‐state exfoliation reaction wherein the formation of CaCl2 promotes the extraction of Ca from CaSi2, thereby exfoliating the layered structure. The nanocomposites showed anode capacity for lithium ion batteries up to 804 mA h g?1.  相似文献   

10.
The power and versatility of NMR spectroscopy is strongly related to the ability to manipulate NMR interactions by the application of radio‐frequency (rf) pulse sequences. Unfortunately, the rf fields seen by the spins differ from the ones programmed by the experimentalist. Pulse transients, i.e., deviations of the amplitude and phase of the rf fields from the desired values, can have a severe impact on the performance of pulse sequences and can lead to inconsistent results. Here, we demonstrate how transient‐compensated pulses can greatly improve the efficiency and reproducibility of NMR experiments. The implementation is based on a measurement of the characteristics of the resonance circuit and does not rely on an experimental optimization of the NMR signal. We show how the pulse sequence has to be modified to use it with transient‐compensated pulses. The efficiency and reproducibility of the transient‐compensated sequence is greatly superior to the original POST‐C7 sequence.  相似文献   

11.
12.
We report the supercell crystal structure of a ZIF‐8 analog substituted imidazolate metal–organic framework (SIM‐1) obtained by combining solid‐state nuclear magnetic resonance and powder X‐ray diffraction experiments with density functional theory calculations.  相似文献   

13.
A riddle solved! Despite its simple formula, the structure of the (SCN)x polymer has remained elusive since its first synthesis in 1929. From energetics as well as NMR chemical shifts, based on DFT calculations, we have strong evidence that it is indeed a tangle of linear chains, made up from N‐linked S2C2N five‐membered rings.

  相似文献   


14.
15.
A new manganese(II) coordination polymer, [Mn3(atpt)3(2, 2′‐bpy)2]n ( 1 ) (H2atpt = 2‐aminoterephthalic acid; 2, 2′‐bpy = 2, 2′‐bipyridine), was synthesized by hydrothermal reaction of Mn(OAc)2, H2atpt, and 2, 2′‐bpy. It was structurally characterized by element analysis, IR spectroscopy, powder XRD, and magnetic measurements. X‐ray single‐crystal analysis was carried out for 1 , which crystallizes in the orthorhombic system, space group Pbca. The single X‐ray diffraction studies reveal that 1 consists of infinite layers of alternating trinuclear manganese subunits and H2atpt ligands. There are two types of different coordination modes of H2atpt in 1 . Magnetic susceptibility data for 1 were measured in the range 3–300 K. There are antiferromagnetic interactions between manganese ions of 1 .  相似文献   

16.
NMR studies of the structure and dynamics of a system composed of the acidic polymer poly(acrylic acid) (PAA) and the basic polymer poly(4‐vinyl pyridine) (P4VP) are presented. This system aims at the application of anhydrous proton‐conducting membranes that can be used at elevated temperatures at which the proton conduction of hydrated membranes breaks down. The 1H NMR measurements have been preformed under fast magic angle spinning (MAS) conditions to achieve sufficient resolution and the applied 1H NMR methods vary from simple 1H MAS to double‐quantum filtered methods and two‐dimensional 1H double‐quantum spectroscopy. The dynamic behavior of the systems has been investigated via variable temperature 1H MAS NMR. 13C cross‐polarization MAS NMR provides additional aspects of dynamic and structural features to complete the picture. Different types of acidic protons have been identified in the studied PAA‐P4VP systems that are nonhydrogen‐bonded free acidic protons, hydrogen‐bonded dicarboxylic dimers, and protons forming hydrogen bonds between carboxylic protons and ring nitrogens. The conversion of dimer structures in dried PAA to free carboxylic acid groups is accomplished at temperatures above 380 K. However, the stability of hydrogen‐bonding strongly depends on the hydration level of the polymer systems. The effect of hydration becomes less apparent in the complexes. An inverse proportionality between hydrogen‐bonding strength and proton conduction in the PAA‐P4VP acid–base polymer blend systems was established. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 138–155, 2009  相似文献   

17.
18.
19.
20.
The optimization and control of the nanomorphology of thin films used as active layer in bulk heterojunction (BHJ) plastic solar cells is of key importance for a better understanding of the photovoltaic mechanisms and for increasing the device performances. Hereto, solid‐state NMR relaxation experiments have been evaluated to describe the film morphology of one of the “work‐horse” systems poly(2‐methoxy‐5‐(3′,7′‐dimethyloctyloxy)‐1,4‐phenylene‐vinylene)/[6, 6]‐phenyl‐C61butyric acid methyl ester (MDMO‐PPV/PCBM) in a quantitative way. Attention is focused on the influence of the processing solvent (toluene vs. chlorobenzene), the blend composition, and the casting technique, that is, spin coating versus doctor blading. It is demonstrated that independently of the solvent and casting technique, part of the PCBM becomes phase separated from the mixed phase. Whereas casting from toluene results in the development of well‐defined PCBM crystallites, casting from chlorobenzene leads to the formation of PCBM‐rich domains that contain substructures of weakly organized PCBM nanoclusters. The amount and physico‐chemical state of the phase separated PCBM is quantified by solid‐state NMR relaxation times experiments. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号