首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetics of transalkylation and isomerization of meta‐diethylbenzene in the presence of benzene using triflic acid as a catalyst has been investigated. High catalytic activity of the triflic acid catalyst was observed in homogeneous liquid‐phase reactions. On the basis of the product distribution obtained, transalkylation, disproportionation, and isomerization reactions have been considered and the main product of the reaction was ethylbenzene. These reactions are conducted in a closed liquid batch reactor with continuous stirring under dry nitrogen and atmospheric pressure over the temperature range of 288–308 K. The main transalkylation, disproportionation, and isomerization reactions occurred simultaneously and were considered as elementary reactions. The apparent activation energy of the transalkylation reaction was found to be 35.5 kJ/mol, while that of disproportionation reaction was 42.3 kJ/mol. The reproducibility of the experimental product distribution occurred with an average relative error of ±2%. © 2003 Wiley Periodicals, Inc. Int J Chem Kinet 35: 555–563, 2003  相似文献   

2.
Herein, a dual‐gold catalyzed cyclization of 3,4‐diethynylthiophenes generating pentaleno[c]thiophenes through gold–vinylidenes and C?H bond activation is disclosed. Various new heteroaromatic compounds—substrate classes unexplored to date—exhibiting three five‐membered annulated ring systems could be synthesized in moderate to high yields. By comparison of the solid‐state structures of the corresponding gold–acetylides, it could be demonstrated that the cyclization mode (5‐endo versus 6‐endo) is controlled by the electronic and not steric nature of the diyne backbone. Depending on different backbones, we calculated thermodynamic stabilities and full potential‐energy surfaces giving insight into the crucial dual‐activation cyclization step. In the case of the 3,4‐thiophene backbone, in which the initial cyclization is rate and selectivity determining, two energetically distinct transition states could be localized explaining the observed 5‐endo cyclization mode by classical transition‐state theory. In the case of vinyl and 2,3‐thiophene backbones, the theoretical analysis of the cyclization mode in the bifurcated cyclization area demonstrated that classical transition‐state theory is no longer valid to explain the high experimentally observed selectivity. Herein, for the first time, the influence of the backbone and the aromatic stabilization effect of the 6‐endo product in the crucial cyclization step could be visualized and quantified by calculating and comparing the full potential‐energy surfaces.  相似文献   

3.
A number of saturated abnormal N‐heterocyclic carbene (NHC) complexes of gold, in combination with KBArF4 as activator, were successfully applied in the chemoselective addition of hydrazine to alkynes. The reaction proceeds even at room temperature, which was not possible to date with gold catalysts. The reaction can be applied to a number of substituted arylalkynes. With alkylalkynes the yields are low. The saturated abnormal NHC ligands are resistant to isomerization to the saturated normal NHC coordination mode under basic reaction conditions. Under acidic conditions, a simple protonation at the nitrogen atom not neighboring the carbene center was observed and unambiguously characterized by an X‐ray crystal‐structure analysis. Computational studies confirm that such an isomerization would be highly exothermic, the observed kinetic stability probably results from the need to shift two protons in such a process.  相似文献   

4.
A series of 2‐alkynyl carbonyl compounds that contain a cyclopentene ring or a heterocycle can be transformed into various fused dihydrobenzofurans and tetrahydrofuro[2,3‐c]pyridines by means of a 1,2‐alkyl migration process. Both of these reactions proceed with excellent regioselectivity and stereospecificity when using a cationic gold(I) catalyst. Treatment of 4‐styrylcyclopent‐1‐enecarboxylates under different conditions affords a range of highly functionalized dihydrobenzofurans and dihydroisobenzofurans. A divergence in product selectivity, which depends on the anion of the silver salts used, was observed. Interestingly, ring‐fused tetrahydroquinolines undergo only 1,2′‐alkyl migration reaction by means of a C? C cleavage/cyclization sequence to provide tetrahydroazepine derivatives. Mechanistic studies suggest that the gold complexes catalyze 1,2‐alkyl migration reactions through a concerted reaction pathway and 1,2′‐alkyl migration reactions through a stepwise reaction pathway.  相似文献   

5.
The electrochemical reduction of WCl6 results in the formation of an active olefin (alkene) metathesis catalyst. The application of the WCl6–e?–Al–CH2Cl2 catalyst system to cross‐metathesis reactions of non‐functionalized acyclic olefins is reported. Undesirable reactions, such as double‐bond shift isomerization and subsequent metathesis, were not observed in these reactions. Cross‐metathesis of 7‐tetradecene with an equimolar amount of 4‐octene generated the desired cross‐product, 4‐undecene, in good yield. The reaction of 7‐tetradecene with 2‐octene, catalyzed by electrochemically reduced tungsten hexachloride, resulted in both self‐ and cross‐metathesis products. The cross‐metathesis products, 2‐nonene and 6‐tridecene, were formed in larger amounts than the self‐metathesis products of 2‐octene. The optimum catalyst/olefin ratio and reaction time were found to be 1 : 60 and 24 h, respectively. The cross‐metathesis of symmetrical olefins with α‐olefins was also studied under the predetermined conditions. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

6.
Bifunctional Fischer–Tropsch (FT) catalysts that couple uniform‐sized Co nanoparticles for CO hydrogenation and mesoporous zeolites for hydrocracking/isomerization reactions were found to be promising for the direct production of gasoline‐range (C5–11) hydrocarbons from syngas. The Brønsted acidity results in hydrocracking/isomerization of the heavier hydrocarbons formed on Co nanoparticles, while the mesoporosity contributes to suppressing the formation of lighter (C1–4) hydrocarbons. The selectivity for C5–11 hydrocarbons could reach about 70 % with a ratio of isoparaffins to n‐paraffins of approximately 2.3 over this catalyst, and the former is markedly higher than the maximum value (ca. 45 %) expected from the Anderson–Schulz–Flory distribution. By using n‐hexadecane as a model compound, it was clarified that both the acidity and mesoporosity play key roles in controlling the hydrocracking reactions and thus contribute to the improved product selectivity in FT synthesis.  相似文献   

7.
Non‐thermal plasma activation has been used to enable low‐temperature water‐gas shift over a Au/CeZrO4 catalyst. The activity obtained was comparable with that attained by heating the catalyst to 180 °C providing an opportunity for the hydrogen production to be obtained under conditions where the thermodynamic limitations are minimal. Using in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), structural changes associated with the gold nanoparticles in the catalyst have been observed which are not found under thermal activation indicating a weakening of the Au−CO bond and a change in the mechanism of deactivation.  相似文献   

8.
A two‐step, one‐pot synthesis of fused pyrroles is realized by firstly condensing an N‐alkynylhydroxammonium salt with a readily enolizable ketone under mild basic conditions and then subjecting the reaction mixture to a gold catalyst, which triggers a cascade reaction involving a facile initial [3.3]‐sigmatropic rearrangement of the gold‐catalysis product, that is, an N,O‐dialkenylhydroxamine. The reaction provides a facile access to polycyclic pyrroles in moderate to good yields.  相似文献   

9.
Carboxylate assistance proved to be the key for the success of efficient cobalt(III)‐catalyzed C? H cyanations. Thus, an in situ generated cationic cobalt complex was identified as a versatile catalyst for the site‐selective synthesis of various aromatic and heteroaromatic nitriles with ample substrate scope.  相似文献   

10.
We describe herein a highly elegant and suitable synthesis of amide products from alcohols and amines through a tandem oxidation process that uses molecular oxygen as a terminal oxidant. Carbon‐black‐stabilized polymer‐incarcerated gold (PICB‐Au) or gold/cobalt (PICB‐Au/Co) nanoparticles were employed as an efficient heterogeneous catalyst depending on alcohol reactivity and generated only water as the major co‐product of the reaction. A wide scope of substrate applicability was shown with 42 examples. The catalysts could be recovered and reused without loss of activity by using a simple operation.  相似文献   

11.
A wide range of primary, secondary and tertiary propargylic alcohols undergo a Meyer–Schuster rearrangement to give enones at room temperature in the presence of a gold(I) catalyst and small quantities of MeOH or 4‐methoxyphenylboronic acid. The syntheses of the enone natural products isoegomaketone and daphenone were achieved using this reaction as the key step. The rearrangement of primary propargylic alcohols can readily be combined in a one‐pot procedure with the addition of a nucleophile to the resulting terminal enone, to give β‐aryl, β‐alkoxy, β‐amino or β‐sulfido ketones. Propargylic alcohols bearing an adjacent electron‐rich aryl group can also undergo silver‐catalyzed substitution of the alcohol with oxygen, nitrogen and carbon nucleophiles. This latter reaction was initially observed with a batch of gold catalyst that was probably contaminated with small quantities of silver salt.  相似文献   

12.
The cobalt‐catalyzed isomerization of 1,3‐dienes to 2Z,4E‐dienes was realized for the very challenging substrates with an additional double bond in the side chain. An isomerization to the conjugated 3,5,7‐triene derivative was not observed, which is in stark contrast to observations with many other isomerization catalysts. Accordingly, the synthesis of the natural product urushiol, which has a sensitive 2Z,4E,7Z‐triene subunit in the side chain, was investigated. The O‐protected urushiol derivative was generated selectively without isomerization to the conjugated 3,5,7‐triene or Z/E‐isomerization of the double bond at position 7.  相似文献   

13.
Conjugated 1,5‐diynes bearing two aromatic units at the alkyne termini were converted in the presence of a gold catalyst. Under mild conditions, aryl‐substituted dibenzopentalenes were generated. Calculations predict that aurated vinyl cations are key intermediates of the reaction. A bidirectional approach provided selective access to the angular annulated product in high yield, which was explained by calculations.  相似文献   

14.
The chemoselective addition of arenes and 1,3‐diketones to α‐aryldiazoesters was achieved through ligand‐controlled gold catalysis. Unlike a dirhodium catalyst (which promotes C? H insertion and cyclopropanation) and a copper catalyst (which catalyzes O? H and N? H insertions), the gold catalyst with an electron‐deficient phosphite as the ancillary ligand exclusively gave the carbophilic addition product, thus representing a new and efficient approach to form “carbophilic carbocations”, which selectively react with carbon nucleophiles.  相似文献   

15.
Suzuki–Miyaura cross‐coupling reactions between a variety of alkyl halides and unactivated aryl boronic esters using a rationally designed iron‐based catalyst supported by β‐diketiminate ligands are described. High catalyst activity resulted in a broad substrate scope that included tertiary alkyl halides and heteroaromatic boronic esters. Mechanistic experiments revealed that the iron‐based catalyst benefited from the propensity for β‐diketiminate ligands to support low‐coordinate and highly reducing iron amide intermediates, which are very efficient for effecting the transmetalation step required for the Suzuki–Miyaura cross‐coupling reaction.  相似文献   

16.
We have developed a unified strategy for preparing a variety of imidazo‐fused N‐heteroaromatic compounds through regiospecific electrochemical (3+2) annulation reaction of heteroarylamines with tethered internal alkynes. The electrosynthesis employs a novel tetraarylhydrazine as the catalyst, has a broad substrate scope, and obviates the need for transition‐metal catalysts and oxidizing reagents.  相似文献   

17.
Heterobimetallic catalysis offers new opportunities for reactivity and selectivity but still presents challenges, and only a few metal combinations have been explored so far. Reported here is a Pt‐Au heterobimetallic catalyst system for the synthesis of a family of multi‐heteroaromatic structures through tandem cyclization/C?X coupling reaction. Au‐catalyzed 6‐endo‐cyclization takes place as the first fast step. Pt‐Au clusters are proposed to be responsible for the increased reactivity in the second step, that is, the intermolecular nucleophilic addition which occurs through an outer‐sphere mechanism by hybrid homogeneous‐heterogeneous catalysis.  相似文献   

18.
New and chemoselective gold(I)‐catalyzed transformations of 1‐(arylethynyl)‐7‐oxabicyclo[4.1.0]‐ heptan‐2‐ones were developed. Two completely different products—6,7‐dihydrobenzofuran‐4(5H)‐ones and benzofurans—could be obtained from the same starting material. The selectivity is determined by the ligand of the gold catalyst: triphenylphosphine delivers 6,7‐dihydrobenzofuran‐4(5H)‐ones, and 1,3‐bis(diisopropylphenyl)imidazol‐2‐ylidene leads to benzofurans. Eleven examples of each case are provided. The mechanistic suggestions for the pathways to both product types are supported by isotope labeling experiments.  相似文献   

19.
C‐H activation and isomerization using a Rh‐catalyst provided quick access to dehydropiperidine derivatives that could be further oxidized to hydroxypiperidinone derivatives.  相似文献   

20.
Compared to the most popular directing‐group‐assisted strategy, the “undirected” strategy for C−H bond functionalization represents a more flexible but more challenging approach. Reported herein is a gold‐catalyzed highly site‐selective C(sp2)−H alkylation of unactivated arenes with 2,2,2‐trifluoroethyl α‐aryl‐α‐diazoesters. This protocol demonstrates that high site‐selective C−H bond functionalization can be achieved without the assistance of a directing group. In this transformation, both the gold catalyst and trifluoroethyl group on the ester of the diazo compound play vital roles for achieving the chemo‐ and regioselectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号