首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We describe herein the hierarchical self‐assembly of discrete supramolecular metallacycles into ordered fibers or spherical particles through multiple noncovalent interactions. A new series of well‐defined metallacycles decorated with long alkyl chains were obtained through metal–ligand interactions, which were capable of aggregating into ordered fibroid or spherical nanostructures on the surface, mostly driven by hydrophobic interactions. In‐depth studies indicated that the morphology diversity was originated from the structural information encoded in the metallacycles, including the number of alkyl chains and their spatial orientation. Interestingly, the morphology of the metallacycle aggregates could be tuned by changing the solvent polarity. These findings are of special significance since they provide a simple yet highly controllable approach to prepare ordered and tunable nanostructures from small building blocks by means of hierarchical self‐assembly.  相似文献   

2.
A family of new alkynylplatinum(II) 2,6‐bis(benzimidazol‐2′‐yl)pyridine (bzimpy)‐functionalized supramolecular metallacycles with different shapes and sizes have been successfully prepared by coordination‐driven self‐assembly. The obtained metallacycles showed switchable emission and a strong tendency to form intermolecular Pt???Pt and π–π stacking interactions in solution that were not displayed by their individual precursors. Further investigation revealed that the existence of the metallacyclic scaffold at the core could facilitate the formation of intermolecular Pt???Pt and π–π stacking interactions of peripheral alkynylplatinum(II) bzimpy units. Moreover, the shapes and sizes of the metallacyclic scaffold have a significant influence on the hierarchical self‐assembly behavior. Among the three metallacycles, hexagonal metallacycle A , with a relatively small size, could spontaneously self‐assemble into an aromatic guest stimuli‐responsive metallogel at room temperature without a heating–cooling process.  相似文献   

3.
《中国化学》2018,36(2):134-138
Self‐assembly post‐modification has proven to be an efficient strategy to build higher‐order supramolecular architectures and functional materials. In this study, we successfully realized the construction of a new family of neutral supramolecular polymeric films containing well‐defined metallacycles as the main scaffolds through combination of coordination‐driven self‐assembly with post‐electropolymerization. The obtained neutral polymeric materials were fully characterized by the cyclic voltammogram (CV), SEM, and TEM. The thickness of the films was able to be well regulated by the number of scanning cycles. Moreover, we found that the shape of the metallacycles and the number of triphenylamine moieties played important roles in the formation of the final polymer films. We believe that the introduction of the neutral metallacycles into the final polymer structures not only enriches the library of supramolecular polymeric films but also provides a new platform to study neutral molecule detection, separation, and capture.  相似文献   

4.
Macrocyclic molecule-based host–guest systems, which provide contributions for the design and construction of functional supramolecular structures, have gained increasing attention in recent years. In particular, platinum(II) metallacycle-based host–guest systems provide opportunities for chemical scientists to prepare novel materials with various functions and structures due to the well-defined shapes and cavity sizes of platinum(II) metallacycles. However, the research on platinum(II) metallacycle-based host–guest systems has been given little attention. In this article, we demonstrate the host–guest complexation between a platinum(II) metallacycle and a polycyclic aromatic hydrocarbon molecule, naphthalene. Taking advantage of metallacycle-based host–guest interactions and the dynamic property of reversible Pt coordination bonds, a [2]rotaxane is efficiently prepared by employing a template-directed clipping procedure. The [2]rotaxane is further applied to the fabrication of an efficient light-harvesting system with multi-step energy transfer process. This work comprises an important supplement to macrocycle-based host–guest systems and demonstrates a strategy for efficient production of well-defined mechanically interlocked molecules with practical values.  相似文献   

5.
A novel Zn(Ⅱ)-porphorin-cored [5]rotaxane with platinum-acetylide as linkage was constructed. The obtained [5]rotaxane performed different morphologies in different solvents. In addition, the ordered morphologies generated from [5]rotaxane exhibited the morphology evolution by time.  相似文献   

6.
The construction of well‐controlled porous materials is very challenging. Herein, we report the successful preparation of structurally defined porous membranes based on hexakistriphenylamine metallacycles through electropolymerization. The newly designed porous materials were characterized by the typical cyclic voltammograms, XPS, SEM, and TEM investigations. Further investigations revealed that the metallacycle‐based polymer films displayed a good size‐selective molecular‐sieving behavior.  相似文献   

7.
Since the start of this millennium, remarkable progress in the binding and sensing of anions has been taking place, driven in part by discoveries in the use of hydrogen bonding, as well as the previously under‐exploited anion–π interactions and halogen bonding. However, anion supramolecular chemistry has developed substantially beyond anion recognition, and now encompasses a diverse range of disciplines. Dramatic advance has been made in the anion‐templated synthesis of macrocycles and interlocked molecular architectures, while the study of transmembrane anion transporters has flourished from almost nothing into a rapidly maturing field of research. The supramolecular chemistry of anions has also found real practical use in a variety of applications such as catalysis, ion extraction, and the use of anions as stimuli for responsive chemical systems.  相似文献   

8.
Two rhomboidal metallacycles based on metal‐coordination‐driven self‐assembly are presented. Because metal‐coordination interactions restrict the rotation of phenyl groups on tetraphenylethene units, these metallacycles were emissive both in solution and in solid state, and their aggregation‐induced emission properties were well‐retained. Moreover, the rhomboidal metallacyclic structures offer a platform for intermolecular packing beneficial for the formation of liquid crystalline phases. Therefore, although neither of building blocks shows mesogenic properties, both thermotropic and lyotropic (in DMF) mesophases were observed in one of metallacycles, indicating that mesophases could be induced by metal‐coordination interactions. This study not only reveals the mechanism for the formation of cavity‐cored liquid crystals, but also provides a convenient approach to preparing supramolecular luminescent liquid crystals, which will serve as good candidates for chemo sensors and liquid crystal displays.  相似文献   

9.
Despite the remarkable progress made in controllable self‐assembly of stimuli‐responsive supramolecular polymers (SSPs), a basic issue that has not been consideration to date is the essential binding site. The noncovalent binding sites, which connect the building blocks and endow supramolecular polymers with their ability to respond to stimuli, are expected to strongly affect the self‐assembly of SSPs. Herein, the design and synthesis of a dual‐stimuli thermo‐ and photoresponsive Y‐shaped supramolecular polymer (SSP2) with two adjacent β‐cyclodextrin/azobenzene (β‐CD/Azo) binding sites, and another SSP (SSP1) with similar building blocks, but only one β‐CD/Azo binding site as a control, are described. Upon gradually increasing the polymer solution temperature or irradiating with UV light, SSP2 self‐assemblies with a higher binding‐site distribution density; exhibits a flower‐like morphology, smaller size, and more stable dynamic aggregation process; and greater controllability for drug‐release behavior than those observed with SSP1 self‐assemblies. The host–guest binding‐site‐tunable self‐assembly was attributed to the positive cooperativity generated among adjacent binding sites on the surfaces of SSP2 self‐assemblies. This work is beneficial for precisely controlling the structural parameters and controlled release function of SSP self‐assemblies.  相似文献   

10.
《中国化学快报》2022,33(7):3539-3542
Actinide metallacycles are an emerging class of functional coordination assemblies, but multi-level assembly from metallacycle units toward hierarchical supramolecular structures are still rarely investigated. In this work, we put forward a novel supramolecular inclusion-based method through introducing two macrocyclic hosts, cucurbit[7]uril (CB[7]) and cucurbit[8]uril (CB[8]) to facilitate hierarchical assembly of uranyl metallacycles with higher complexity, and successfully prepare two different kinds of uranyl metallacycle-based complexes with intriguing hierarchical structures, a CB[7]-based four-member molecular necklace ([4]MN) and a CB[8]-involved ring-in-ring supramolecular polymer chain. The results obtained here prove the feasibility of supramolecular inclusion for regulating coordination assembly of uranyl metallacycles and related hierarchical structures. It is believed that this method can be used to achieve the construction of actinide coordination assemblies with higher structural complexity.  相似文献   

11.
Molecular/supramolecular springs are artificial nanoscale objects possessing well‐defined structures and tunable physicochemical properties. Like a macroscopic spring, supramolecular springs are capable of switching their nanoscale conformation as a response to external stimuli by undergoing mechanical spring‐like motions. This dynamic action offers intriguing opportunities for engineering molecular nanomachines by translating the stimuli‐responsive nanoscopic motions into macroscopic work. These nanoscopic objects are reversible dynamic multifunctional architectures which can express a variety of novel properties and behave as adaptive nanoscopic systems. In this Minireview, we focus on the design and structure–property relationships of supramolecular springs and their (self‐)assembly as a prerequisite towards the generation of novel dynamic materials featuring controlled movements to be readily integrated into macroscopic devices for applications in sensing, robotics, and the internet of things.  相似文献   

12.
Reversible covalent bonds play a significant role in achieving the high‐yielding synthesis of mechanically interlocked molecules. Still, only a handful of such bonds have been successfully employed in synthetic procedures. Herein, we introduce a novel approach for the fast and simple preparation of interlocked molecules, combining the dynamic bond character of bis(acyloxy)iodate(I) anions with macrocyclic bambusuril anion receptors. The proof of principle was demonstrated on rotaxane synthesis, with near‐quantitative yields observed in both the classical and “in situ” approach. The rotaxane formation was confirmed in the solid‐state and solution by the X‐ray and NMR studies. Our novel approach could be utilized in the fields of dynamic combinatorial chemistry, supramolecular polymers, or molecular machines, as well inspire further research on molecules that exhibit dynamic behavior, but owing to their high reactivity, have not been considered as constituents of more elaborate supramolecular structures.  相似文献   

13.
This Review covers design strategies, synthetic challenges, host–guest chemistry, and functional properties of interlocked supramolecular cages. Some dynamic covalent organic structures are discussed, as are selected examples of interpenetration in metal–organic frameworks, but the main focus is on discrete coordination architectures, that is, metal‐mediated dimers. Factors leading to interpenetration, such as geometry, flexibility and chemical makeup of the ligands, coordination environment, solvent effects, and selection of suitable counter anions and guest molecules, are discussed. In particular, banana‐shaped bis‐pyridyl ligands together with square‐planar metal cations have proven to be suitable building blocks for the construction of interpenetrated double‐cages obeying the formula [M4L8]. The peculiar topology of these double‐cages results in a linear arrangement of three mechanically coupled pockets. This allows for the implementation of interesting guest encapsulation effects such as allosteric binding and template‐controlled selectivity. In stimuli‐responsive systems, anionic triggers can toggle the binding of neutral guests or even induce complete structural conversions. The increasing structural and functional complexity in this class of self‐assembled hosts promises the construction of intelligent receptors, novel catalytic systems, and functional materials.  相似文献   

14.
The construction of stimuli‐responsive materials by using naturally occurring molecules as building blocks has received increasing attention owing to their bioavailability, biocompatibility, and biodegradability. Herein, a symmetrical azobenzene‐functionalized natural glycyrrhizic acid (trans‐ GAG ) was synthesized and could form stable supramolecular gels in DMSO/H2O and MeOH/H2O. Owing to transcis isomerization, this gel exhibited typical light‐responsive behavior that led to a reversible gel–sol transition accompanied by a variation in morphology and rheology. Additionally, this trans‐ GAG gel displayed a distinct injectable self‐healing property and outstanding biocompatibility. This work provides a simple yet rational strategy to fabricate stimuli‐responsive materials from naturally occurring, eco‐friendly molecules.  相似文献   

15.
16.
Biological systems feature controlled assembly of well‐defined building blocks at different length scales. While major progress has been achieved in directing the assembly of synthetic molecular building blocks, controlled organization of nanostructured units into micro‐ and macroscale aggregates remains a challenge. Herein, we report the synthesis of well‐defined nanostructured building blocks, cylindrical polymeric nanoparticles with controlled dimensions and inner surface chemistry, and their dynamic anisotropic organization into one‐dimensional assemblies. Nanoparticle building blocks were produced by molecular templating of cylindrical bottlebrush copolymers featuring tricomponent side chains. The produced nanostructures were composed of a nonionic and bioinert polyethylene glycol (PEG) shell and stimuli‐responsive poly(methacrylic acid) (PMA) chains grafted on the interior. We show that pH‐dependent interactions between PMA chains exposed only at the nanoparticle ends lead to anisotropic end‐to‐end association of parent cylindrical nanostructures into elongated superstructures. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3868–3874  相似文献   

17.
《中国化学快报》2023,34(12):108627
DNA-based supramolecular hydrogels are important and promising biomaterials for various applications due to their inherent biocompatibility and tunable physicochemical properties. The three-dimensional supramolecular matrix of DNA formed by non-covalently dynamic cross-linking provides exceptional adaptability, self-healing, injectable and responsive properties for hydrogels. In addition, DNA hydrogels are also ideal bio-scaffold materials owing to their tissue-like mechanics and intrinsic biological functions. Technically, DNA can assemble into supramolecular networks by pure complementary base pairing; it can also be combined with other building blocks to construct hybrid hydrogels. This review focuses on the development and construction strategies of DNA hydrogels. Assembly and synthesis methods, diverse responsiveness and biomedical applications are summarized. Finally, the challenges and prospects of DNA-based supramolecular hydrogels are discussed.  相似文献   

18.
Metal‐driven self‐assembly afforded a multitude of fascinating supramolecular coordination complexes (SCCs) with applications as catalysts, host–guest, and stimuli‐responsive systems. However, the interest in the biological applications of SCCs is only starting to emerge and thorough characterization of their behavior in biological milieus is still lacking. Herein, we report on the synthesis and detailed in‐cell tracking of a Pt2L2 metallacycle. We show that our hexagonal supramolecule accumulates in cancer cell nuclei, exerting a distinctive blue fluorescence staining of chromatin resistant to UV photobleaching selectively in nucleolar G4‐rich regions. SCC co‐localizes with epitopes of the quadruplex‐specific antibody BG4 and replaces other well‐known G4 stabilizers. Moreover, the photophysical changes accompanying the metallacycle binding to G4s in solution (fluorescence quenching, absorption enhancement) also take place intracellularly, allowing its subcellular interaction tracking.  相似文献   

19.
《中国化学》2018,36(2):171-171
The inside back cover picture shows the construction of neutral supramolecular polymeric films containing well‐defined metallacycles as the main scaffolds through combination of coordination‐driven self‐assembly with post‐electropolymerization. A new 120° triphenylamine substituted dicarboxylate donor ligand and the complementary 120° triphenylamine functionalized di‐Pt(II) acceptor were employed to build neutral multi‐triphenylamine functionalized 2‐D metallacycles with the well‐defined shape and size via the formation of oxygen‐to‐platinum coordination bonds. Subsequent post‐electropolymerization of the obtained neutral multi‐triphenylamine containing metallacycles allowed for fabrication of a new type of neutral polymeric film with well‐controlled cavity sizes and thickness, which may have potential applications in neutral molecule detection, separation, and capture. More details are discussed in the article by Yang et al. on page 134–138.

  相似文献   


20.
The results presented here highlight the extremely useful nature of ultra‐short peptides as building blocks in the development of smart multicomponent supramolecular devices. A facile bottom‐up strategy for the synthesis of a small library of stimuli‐responsive smart organogelators has been proposed based on the predictive self‐assembly of ultra‐short peptides. More importantly, the narcissistic self‐sorting of the gelators has been evaluated as a simple method for the efficient co‐assembly of a donor–acceptor dual‐component gel, allowing the investigation of possible future applications of similar systems in the development of a supramolecular photo‐conversion device. Interestingly, it was observed that the self‐organization of the components can lead to highly ordered systems in which discrimination between compatible and non‐compatible building blocks directs the effective organization of the chromophores and gives rise to the formation of an excited‐state complex with exciplex‐like emission. The current report may prove important in the development of organogel‐based multicomponent smart devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号