首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
CCG triplet repeats can fold into tetraplex structures, which are associated with the expansion of (CCG)n trinucleotide sequences in certain neurological diseases. These structures are stabilized by intertwining i‐motifs. However, the structural basis for tetraplex i‐motif formation in CCG triplet repeats remains largely unknown. We report the first crystal structure of a CCG‐repeat sequence, which shows that two dT(CCG)3A strands can associate to form a tetraplex structure with an i‐motif core containing four C:C+ pairs flanked by two G:G homopurine base pairs as a structural motif. The tetraplex core is attached to a short parallel‐stranded duplex. Each hairpin itself contains a central CCG loop in which the nucleotides are flipped out and stabilized by stacking interactions. The helical twists between adjacent cytosine residues of this structure in the i‐motif core have an average value of 30°, which is greater than those previously reported for i‐motif structures.  相似文献   

2.
The metallo DNA duplex containing mercury‐mediated T–T base pairs is an attractive biomacromolecular nanomaterial which can be applied to nanodevices such as ion sensors. Reported herein is the first crystal structure of a B‐form DNA duplex containing two consecutive T–HgII–T base pairs. The HgII ion occupies the center between two T residues. The N3‐HgII bond distance is 2.0 Å. The relatively short HgII‐HgII distance (3.3 Å) observed in consecutive T–HgII–T base pairs suggests that the metallophilic attraction could exist between them and may stabilize the B‐form double helix. To support this, the DNA duplex is largely distorted and adopts an unusual nonhelical conformation in the absence of HgII. The structure of the metallo DNA duplex itself and the HgII‐induced structural switching from the nonhelical form to the B‐form provide the basis for structure‐based design of metal‐conjugated nucleic acid nanomaterials.  相似文献   

3.
4.
Hoogsteen DNA base pairs (bps) are an alternative base pairing to canonical Watson–Crick bps and are thought to play important biochemical roles. Hoogsteen bps have been reported in a handful of X‐ray structures of protein–DNA complexes. However, there are several examples of Hoogsteen bps in crystal structures that form Watson–Crick bps when examined under solution conditions. Furthermore, Hoogsteen bps can sometimes be difficult to resolve in DNA:protein complexes by X‐ray crystallography due to ambiguous electron density and by solution‐state NMR spectroscopy due to size limitations. Here, using infrared spectroscopy, we report the first direct solution‐state observation of a Hoogsteen (G–C+) bp in a DNA:protein complex under solution conditions with specific application to DNA‐bound TATA‐box binding protein. These results support a previous assignment of a G–C+ Hoogsteen bp in the complex, and indicate that Hoogsteen bps do indeed exist under solution conditions in DNA:protein complexes.  相似文献   

5.
A reaction mechanism that describes the substitution of two imino protons in a thymine:thymine (T:T) mismatched DNA base pair with a HgII ion, which results in the formation of a (T)N3‐HgII‐N3(T) metal‐mediated base pair was proposed and calculated. The mechanism assumes two key steps: The formation of the first HgII? N3(T) bond is triggered by deprotonation of the imino N3 atom in thymine with a hydroxo ligand on the HgII ion. The formation of the second HgII? N3(T) bond proceeds through water‐assisted tautomerization of the remaining, metal‐nonbonded thymine base or through thymine deprotonation with a hydroxo ligand of the HgII ion already coordinated to the thymine base. The thermodynamic parameters ΔGR=?9.5 kcal mol?1, ΔHR=?4.7 kcal mol?1, and ΔSR=16.0 cal mol?1 K?1 calculated with the ONIOM (B3LYP:BP86) method for the reaction agreed well with the isothermal titration calorimetric (ITC) measurements by Torigoe et al. [H. Torigoe, A. Ono, T. Kozasa, Chem. Eur. J. 2010 , 16, 13218–13225]. The peculiar positive reaction entropy measured previously was due to both dehydration of the metal and the change in chemical bonding. The mercury reactant in the theoretical model contained one hydroxo ligand in accord with the experimental pKa value of 3.6 known for an aqua ligand of a HgII center. The chemical modification of T:T mismatched to the T‐HgII‐T metal‐mediated base pair was modeled for the middle base pair within a trinucleotide B‐DNA duplex, which ensured complete dehydration of the HgII ion during the reaction.  相似文献   

6.
The logic system is obtained by using a series of double‐stranded (ds) DNA templates with mismatched base pairs (T–T or C–C) and ion‐modulated exonuclease III (Exo III) activity, in which the Exo III cofactors, Hg2+ and Ag+ ions, are used as inputs for the activation of the respective scission of Exo III based on the formation of T–Hg2+–T or C–Ag+–C base pairs. Additionally, two kinds of signal probes are utilized to transduce the logic operations. One is the two split G‐rich DNA strands that are used to design the OR, AND, INHIBIT, and XOR gates, whereas the other is the self‐assembled split G‐quadruplex structure to construct NOR, NAND, IMPLICATION, and XNOR operations based on DNA hybridization and strand displacement. In the presence of hemin, the split G‐quadruplex biocatalyzes the formation of a colored product, which is an output signal for the different logic gates. Thus, we have constructed a complete set of colorimetric DNA logic gates based on the Exo III and split G‐quadruplex for the first time. In addition, we are able to effortlessly recognize the logic output signals by the naked eye and their simplicity and cost‐effective design is the most apparent feature for the logic gates developed in this work.  相似文献   

7.
The paper shows the structural diversity of cytosine (C)‐rich oligodeoxynucleotides (ODNs) arising from their detail nucleotide sequence and experimental conditions. In slightly acidic solutions, the ODN nonamers with different adenine (A) and cytosine (C) sequences can adopt non‐canonical structures involving protonated bases. A distinct secondary structure formed in (C)‐rich sequences, called i‐motif (iM), consists of hemiprotonated and intercalated cytosine base pairs (C.C+). Folding and unfolding of particular structures in solutions were monitored by 1H NMR and CD spectroscopies and native polyacrylamide gel electrophoresis (PAGE), which are capable to determine their structural characteristics. Effects of sequences and their proclivity to formation of the iM on electrochemical behaviour of the ODN nonamers were studied by electrochemical methods. The LSV signals of A and C obtained from the reductive dissolution of ODN adsorption layers on a hanging mercury drop electrode were processed by elimination voltammetry with linear scan (EVLS), which revealed complex effects of the nonamer properties (namely their primary and secondary structure confirmed in solution) on their adsorption and reduction activity.  相似文献   

8.
The B3LYP/DZP++ approach has been used to investigate the properties of hydrogenated radicals and anions of adenine‐thymine (A‐T) base pairs. Our calculations show that the hydrogenated radicals and anions have relatively high stabilities compared with the single adenine and thymine base. The conformations and hydrogen‐bond interactions of A‐T base pairs have obviously changed once the hydrogen atoms attached to the A‐T base pairs and their anion. As for the hydrogenated A‐T radicals, all of them exhibit relatively high electron affinities and different hydrogenation properties with respect to their components. The process of the bond formations of (C6)‐H (adenine) and (C6)‐H (thymine) are the most favorable in energetics. The two hydrogenation channels have the reaction Gibbs free energies (ΔG°) of ?51.8 and ?54.2 kcal mol?1, respectively. Also, the calculations on the basis of CPCM model imply that the solvent effect plays an important role in the electron attachment and hydrogenation reactions, and can stabilize the hydrogenated A‐T anions. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012  相似文献   

9.
The Raman and fluorescence spectroscopic properties of water‐soluble oxo‐titanium(IV) mesotetrakis (1‐methyl pyridium‐4‐yl) porphyrin (O=Ti(TMPyP)4+) bound with calf thymus DNA and artificial DNAs such as double stranded poly[d(A‐T)2] and poly[d(G‐C)2] have been investigated on the single DNA molecule basis by AFM‐correlated confocal scanning microscope (CSM)‐coupled Raman and fluorescence spectroscopic techniques as well as the ensemble‐averaged spectroscopy. The ensemble‐averaged spectroscopic studies imply that the porphyrin interacts with DNA in different groove binding patterns depending on the base pairs. AFM‐images of the different DNAs bound with O=Ti(TMPyP)4+ were measured, and their morphologies are found to depend on kind of base pairs interacting with O=Ti(TMPyP)4+. Being correlated with the AFM images, the CSM‐coupled Raman and fluorescence spectral properties of the three different single O=Ti(TMPyP)4+‐DNA complexes were observed to be highly resolved and sensitive to base pair‐dependent axial ligation of Ti‐O bond as compared to the corresponding ensemble‐averaged spectral properties, which affect the groove binding and its strength of the O=Ti(TMPyP)4+ with DNA. The axial ligation was found to be accompanied by vibration structural change of the porphyrin ring, leading to keep the shape of double stranded poly[d(A‐T)2] rigid while poly‐[d(G‐C)2] and calf thymus DNA flexible after binding with the oxo‐titanyl porphyrin. The base pair dependence of the fluorescence decay times of the DNA‐bound porphyrins was also observed, implying that an excited‐state charge transfer takes place in the G‐C rich major groove in calf thymus DNA. These results suggest that binding of O=Ti(TMPyP)4+ is more preferential with the G‐C rich major groove than with the A‐T rich minor groove in calf thymus DNA so that the morphology of DNA is changed.  相似文献   

10.
A novel bifacial ligand‐bearing nucleobase, 5‐hydroxyuracil ( UOH ), which forms both a hydrogen‐bonded base pair ( UOH –A) and a metal‐mediated base pair ( UOH –M– UOH ) has been developed. The UOH –M– UOH base pairs were quantitatively formed in the presence of lanthanide ions such as GdIII when UOH – UOH pairs were consecutively incorporated into DNA duplexes. This result established metal‐assisted duplex stabilization as well as DNA‐templated assembly of lanthanide ions. Notably, a duplex possessing UOH –A base pairs was destabilized by addition of GdIII ions. This observation suggests that the hybridization behaviors of the UOH ‐containing DNA strands are altered by metal complexation. Thus, the UOH nucleobase with a bifacial base‐pairing property holds great promise as a component for metal‐responsive DNA materials.  相似文献   

11.
Metallo‐base pairs have been extensively studied for applications in nucleic acid‐based nanodevices and genetic code expansion. Metallo‐base pairs composed of natural nucleobases are attractive because nanodevices containing natural metallo‐base pairs can be easily prepared from commercially available sources. Previously, we have reported a crystal structure of a DNA duplex containing T? HgII? T base pairs. Herein, we have determined a high‐resolution crystal structure of the second natural metallo‐base pair between pyrimidine bases C? AgI? C formed in an RNA duplex. One AgI occupies the center between two cytosines and forms a C? AgI? C base pair through N3? AgI? N3 linear coordination. The C? AgI? C base pair formation does not disturb the standard A‐form conformation of RNA. Since the C? AgI? C base pair is structurally similar to the canonical Watson–Crick base pairs, it can be a useful building block for structure‐based design and fabrication of nucleic acid‐based nanodevices.  相似文献   

12.
Reverse Watson–Crick DNA with parallel‐strand orientation (ps DNA) has been constructed. Pyrrolo‐dC (PyrdC) nucleosides with phenyl and pyridinyl residues linked to the 6 position of the pyrrolo[2,3‐d]pyrimidine base have been incorporated in 12‐ and 25‐mer oligonucleotide duplexes and utilized as silver‐ion binding sites. Thermal‐stability studies on the parallel DNA strands demonstrated extremely strong silver‐ion binding and strongly enhanced duplex stability. Stoichiometric UV and fluorescence titration experiments verified that a single 2pyPyrdC–2pyPyrdC pair captures two silver ions in ps DNA. A structure for the PyrdC silver‐ion base pair that aligns 7‐deazapurine bases head‐to‐tail instead of head‐to‐head, as suggested for canonical DNA, is proposed. The silver DNA double helix represents the first example of a ps DNA structure built up of bidentate and tridentate reverse Watson–Crick base pairs stabilized by a dinuclear silver‐mediated PyrdC pair.  相似文献   

13.
A series of nucleobased polymers and copolymers were synthesized through atom transfer radical polymerization (ATRP). Biocomplementary DNA‐ and RNA‐like supramolecular complexes are formed in dilute DMSO solution through nucleobase recognition. 1H NMR titration studies of these complexes in CDCl3 indicated that thymine‐adenine (T‐A) and uracil‐adenine (U‐A) complexes form rapidly on the NMR time scale with high association constants (up to 534 and 671 M–1, respectively) and result in significant Tg increase. WAXD and differential scanning calorimetry analyzes in the bulk state indicate the presence of highly physical cross‐linked structures and provide further details into the nature of the self‐assembly of these systems. Furthermore, this study is of discussion on the difference in the hydrogen bond strength between T‐A and U‐A base pairs within polymer systems, indicating that the strength of hydrogen bonds in RNA U‐A pairs is stronger than that in DNA T‐A base pairs. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6388–6395, 2009  相似文献   

14.
Janus bases are heterocyclic nucleic acid base analogs that present two different faces able to simultaneously hydrogen bond to nucleosides that form Watson–Crick base pairs. The synthesis of a Janus‐AT nucleotide analogue, N JAT , that has an additional endocyclic ring nitrogen and is thus more capable of efficiently discriminating T/A over G/C bases when base‐pairing in a standard duplex‐DNA context is described. Conversion to a phosphoramidite ultimately afforded incorporation into an oligonucleotide. In contrast to the first generation of carbocyclic Janus heterocycles, it remains in its unprotonated state at physiological pH and, therefore, forms very stable Watson–Crick base pairs with either A or T bases. Biophysical and computational methods indicate that N JAT is an improved candidate for sequence‐specific genome targeting.  相似文献   

15.
We have designed and synthesised a double‐headed nucleotide that presents two nucleobases in the interior of a dsDNA duplex. This nucleotide recognises and forms Watson–Crick base pairs with two complementary adenosines in a Watson–Crick framework. Furthermore, with judicious positioning in complementary strands, the nucleotide recognises itself through the formation of a T:T base pair. Thus, two novel nucleic acid motifs can be defined by using our double‐headed nucleotide. Both motifs were characterised by UV melting experiments, CD and NMR spectroscopy and molecular dynamics simulations. Both motifs leave the thermostability of the native dsDNA duplex largely unaltered. Molecular dynamics calculations showed that the double‐headed nucleotides are accommodated in the dsDNA by entirely local perturbations and that the modified duplexes retain an overall B‐type geometry with the dsDNA unwound by around 25 or 60°, respectively, in each of the modified motifs. Both motifs can be accommodated twice in a dsDNA duplex without incurring any loss of stability and extrapolating from this observation and the results of modelling, it is conceivable that both can be multiplied several times within a dsDNA duplex. These new motifs extend the DNA recognition repertoire and may form the basis for a complete series of double‐headed nucleotides based on all 16 base combinations of the four natural nucleobases. In addition, both motifs can be used in the design of nanoscale DNA structures in which a specific duplex twist is required.  相似文献   

16.
17.
A more elaborate sequence‐independent triple‐helix formation viability study was carried out and extended from a recombination‐like triple‐helical DNA motif of a previous study (J. Mol. Recognition 14, 122–139 (2001)). The intended triple‐helix was formed by mixing one part of a DNA hairpin duplex and one part of a single (or third) strand identical to one of the duplex strands and complementary to the other strand. In contrast to the common purine and pyrimidine motifs in triple‐stranded DNA, the strands of the recombination‐like motif are not monotonously built from pyrimidine only, or purine only, in the sequence. The stability of the recombination‐like motif triplexes with varying sequences was monitored by UV thermal melting curves. The results showed that the order of the stability of the R‐form DNA base triads (J. Mol. Biol., 239, 181–200 (1994)) is G*(G ○ C) > C*(C ○ G) > A*(A ○ T) >T*(T ○ A) (the Watson‐Crick base pair is denoted in the parentheses) in 200 mM NaCl, at pH 7. In an attempt to increase the stability of the triplex in the recombination‐like motif, we replaced cytidine by 5‐methylcytidine (mC) of the third strand. There is a general trend that mC modification stabilizes the complex (<2 °C per mC). The complex is furthermore stabilized by Mg2+ ion. The Tm increases from 7 to 2 °C from less stable to highly stable triplex by 20 mM Mg2+ ion in solution.  相似文献   

18.
Numerous applications of metal‐mediated base pairs (metallo‐base‐pairs) to nucleic acid based nanodevices and genetic code expansion have been extensively studied. Many of these metallo‐base‐pairs are formed in DNA and RNA duplexes containing Watson–Crick base pairs. Recently, a crystal structure of a metal–DNA nanowire with an uninterrupted one‐dimensional silver array was reported. We now report the crystal structure of a novel DNA helical wire containing HgII‐mediated T:T and T:G base pairs and water‐mediated C:C base pairs. The Hg‐DNA wire does not contain any Watson–Crick base pairs. Crystals of the Hg‐DNA wire, which is the first DNA wire structure driven by HgII ions, were obtained by mixing the short oligonucleotide d(TTTGC) and HgII ions. This study demonstrates the potential of metallo‐DNA to form various structural components that can be used for functional nanodevices.  相似文献   

19.
In solid‐state engineering, cocrystallization is a strategy actively pursued for pharmaceuticals. Two 1:1 cocrystals of 5‐fluorouracil (5FU; systematic name: 5‐fluoro‐1,3‐dihydropyrimidine‐2,4‐dione), namely 5‐fluorouracil–5‐bromothiophene‐2‐carboxylic acid (1/1), C5H3BrO2S·C4H3FN2O2, (I), and 5‐fluorouracil–thiophene‐2‐carboxylic acid (1/1), C4H3FN2O2·C5H4O2S, (II), have been synthesized and characterized by single‐crystal X‐ray diffraction studies. In both cocrystals, carboxylic acid molecules are linked through an acid–acid R 22(8) homosynthon (O—H…O) to form a carboxylic acid dimer and 5FU molecules are connected through two types of base pairs [homosynthon, R 22(8) motif] via a pair of N—H…O hydrogen bonds. The crystal structures are further stabilized by C—H…O interactions in (II) and C—Br…O interactions in (I). In both crystal structures, π–π stacking and C—F…π interactions are also observed.  相似文献   

20.
In the salt trimethoprimium ferrocenecarboxylate [systematic name: 2,4‐diamino‐5‐(3,4,5‐trimethoxybenzyl)pyrimidin‐1‐ium ferrocene‐1‐carboxylate], (C14H19N4O3)[Fe(C5H5)(C6H4O2)], (I), of the antibacterial compound trimethoprim, the carboxylate group interacts with the protonated aminopyrimidine group of trimethoprim via two N—H…O hydrogen bonds, generating a robust R 22(8) ring motif (heterosynthon). However, in the cocrystal 4‐amino‐5‐chloro‐2,6‐dimethylpyrimidine–ferrocene‐1‐carboxylic acid (1/1), [Fe(C5H5)(C6H5O2)]·C6H8ClN3, (II), the carboxyl–aminopyrimidine interaction [R 22(8) motif] is absent. The carboxyl group interacts with the pyrimidine ring via a single O—H…N hydrogen bond. The pyrimidine rings, however, form base pairs via a pair of N—H…N hydrogen bonds, generating an R 22(8) supramolecular homosynthon. In salt (I), the unsubstituted cyclopentadienyl ring is disordered over two positions, with a refined site‐occupation ratio of 0.573 (10):0.427 (10). In this study, the two five‐membered cyclopentadienyl (Cp) rings of ferrocene are in a staggered conformation, as is evident from the C…Cg Cg …C pseudo‐torsion angles, which are in the range 36.13–37.53° for (I) and 22.58–23.46° for (II). Regarding the Cp ring of the minor component in salt (I), the geometry of the ferrocene ring is in an eclipsed conformation, as is evident from the C…Cg Cg …C pseudo‐torsion angles, which are in the range 79.26–80.94°. Both crystal structures are further stabilized by weak π–π interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号