首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aluminum‐based salen and salan complexes mediate the ring‐opening polymerization (ROP) of rac‐β‐butyrolactone (β‐BL), rac‐lactide, and ε‐caprolactone. Al‐salen and Al‐salan complexes exhibit excellent control over the ROP of rac‐β‐butyrolactone, yielding atactic poly(3‐hydroxybutyrate) (PHB) with narrow PDIs of <1.15 for Al‐salen and <1.05 for Al‐salan. Kinetic studies reveal pseudo‐first‐order polymerization kinetics and a linear relationship between molecular weight and percent conversion. These complexes also mediate the immortal ROP of rac‐β‐BL and rac‐lactide, through the addition of excess benzyl alcohol of up to 50 mol eq., with excellent control observed. A novel methyl/adamantyl‐substituted Al‐salen system further improves control over the ROP of rac‐lactide and rac‐β‐BL, yielding atactic PHB and highly isotactic poly(lactic acid) (Pm = 0.88). Control over the copolymerization of rac‐lactide and rac‐β‐BL was also achieved, yielding poly(lactic acid)‐co‐poly(3‐hydroxybutyrate) with narrow PDIs of <1.10. 1H NMR spectra of the copolymers indicate a strong bias for the insertion of rac‐lactide over rac‐β‐BL. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

2.
Alkaline earth (Ae) metal complexes of the aminophosphine borane ligand are highly active and iso‐selective catalysts for the ring‐opening polymerization (ROP) of rac‐lactide (LA). The polymerization reactions are well controlled and produce polylactides with molecular weights that are precise and narrowly distributed. Kinetic studies reveal that the ROP of rac‐LA catalyzed by all Ae metal complexes had a first‐order dependency on LA concentration as well as catalyst concentration. A plausible reaction mechanism for Ae metal complex‐mediated ROP of rac‐LA is discussed, based on controlled kinetic experiments and molecular chain mobility.  相似文献   

3.
Magnesium (Mg) and zinc (Zn) complexes incorporating tridentate anilido‐aldimine ligand, (E)‐2, 6‐diisopropyl‐N‐(2‐((2‐(piperidin‐1‐yl)ethylimino)methyl)phenyl)aniline ( AA Pip ‐H, 1 ), were synthesized and structurally characterized. The reaction of AA Pip ‐H ( 1 ) with MgnBu2 or ZnEt2 in equivalent proportions afforded the monomeric complex [( AA Pip )MgnBu] ( 2 ) or [( AA Pip )ZnEt] ( 3 ), respectively. The coordination modes of these complexes differ in the solid state: Mg complex 2 shows a four‐coordinated and distorted tetrahedral geometry, whereas Zn complex 3 adopts a trigonal planar geometry with a three‐coordinated Zn center. Complexes 2 and 3 are efficient catalysts for the ring‐opening polymerization of β‐butyrolactone (β‐BL) in the presence of 9‐anthracenemethanol (9‐AnOH). The polymerization of β‐BL with the Zn catalyst system is demonstrated in a living fashion with a narrow polydispersity index, PDI = 1.01–1.10. The number‐averaged molecular weight (Mn) of the produced poly(3‐hydroxybutyrate) (PHB) is quite close to the expected Mn over diverse molar ratios of monomer to 9‐AnOH. A greater ratio of monomer to alcohol catalyzed by Zn complex 3 served to form PHB with a large molecular weight (Mn > 60000). An effective method to prepare PHB‐b‐PCL and PEG‐b‐PHB by the ring‐opening copolymerization of β‐BL catalyzed by zinc complex 3 is reported. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

4.
The kinetics of propylene polymerization initiated by ansa‐metallocene diamide compound rac‐Me2Si(CMB)2Zr(NMe2)2 (rac‐1, CMB = 1‐C5H2‐2‐Me‐4‐tBu)/methylaluminoxane (MAO) catalyst were investigated. The formation of cationic active species has been studied by the sequential NMR‐scale reactions of rac‐1 with MAO. The rac‐1 is first transformed to rac‐Me2Si(CMB)2ZrMe2 (rac‐2) through the alkylation mainly by free AlMe3 contained in MAO. The methylzirconium cations are then formed by the reaction of rac‐2 and MAO. Small amount of MAO ([Al]/[Zr] = 40) is enough to completely activate rac‐1 to afford methylzirconium cations that can polymerize propylene. In the lab‐scale polymerizations carried out at 30°C in toluene, the rate of polymerization (Rp) shows maximum at [Al]/[Zr] = 6,250. The Rp increases as the polymerization temperature (Tp) increases in the range of Tp between 10 and 70°C and as the catalyst concentration increases in the range between 21.9 and 109.6 μM. The activation energies evaluated by simple kinetic scheme are 4.7 kcal/mol during the acceleration period of polymerization and 12.2 kcal/mol for an overall reaction. The introduction of additional free AlMe3 before activating rac‐1 with MAO during polymerization deeply influences the polymerization behavior. The iPPs obtained at various conditions are characterized by high melting point (approximately 155°C), high stereoregularity (almost 100% [mmmm] pentad), low molecular weight (MW), and narrow molecular weight distribution (below 2.0). The fractionation results by various solvents show that iPPs produced at Tp below 30°C are compositionally homogeneous, but those obtained at Tp above 40°C are separated into many fractions. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 737–750, 1999  相似文献   

5.
The copolymerization of propylene with 1‐hexene, 1‐octene, 1‐decene, and 1‐dodecene was carried out with silica‐supported rac‐Me2Si(Ind)2ZrCl2 as a catalyst. The copolymerization activities of the homogeneous and supported catalysts and the microstructures of the resulting copolymers were compared. The activity of the supported catalyst was only one‐half to one‐eighth of that of the homogeneous catalyst, depending on the comonomer type. The supported catalyst copolymerized more comonomer into the polymer chain than the homogeneous catalyst at the same monomer feed ratio. Data of reactivity ratios showed that the depression in the activity of propylene instead of an enhancement in the activity of olefinic comonomer was responsible for this phenomenon. We also found that copolymerization with α‐olefins and supporting the metallocene on a carrier improved the stereoregularity and regioregularity of the copolymers. The melting temperature of all the copolymers decreased linearly with growing comonomer content, regardless of the comonomer type and catalyst system. Low mobility of the propagation chain in the supported catalyst was suggested as the reason for the different polymerization behaviors of the supported catalyst with the homogeneous system. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3294–3303, 2001  相似文献   

6.
New polynuclear zinc complexes containing tridentate Schiff base ligands were successfully synthesized and fully characterized. The solid‐state structure of the complexes was determined using single crystal X‐ray diffraction. The complexes display a tetranuclear cubane‐like core structure [Zn4O4] and sowed good catalytic activity towards the ring‐opening polymerization (ROP ) of rac‐lactide (rac‐LA ) and ε‐caprolactone (ε‐CL ) under solvent‐free conditions. The polylactic acid (PLA ) obtained from rac‐LA showed isotactic enrichment, as proved by homonuclear decoupled 1H‐NMR analysis. These complexes also showed good activity and superior control towards the ROP of rac‐LA and ε‐CL in the presence of benzyl alcohol as a co‐initiator. Furthermore, kinetic studies demonstrated that the ROP of rac‐LA and ε‐CL has a first order dependence on both monomer (rac‐LA and ε‐CL ) and catalyst concentration.  相似文献   

7.
The synthesis, characterization, and ring‐opening polymerization of a new cyclic carbonate monomer containing an allyl ester moiety, 5‐methyl‐5‐allyloxycarbonyl‐1,3‐dioxan‐2‐one (MAC), was performed for the first time. MAC was synthesized in five steps in good yield beginning from the starting material, 2,2‐bis(hydroxymethyl)propionic acid. Subsequent polymerization and copolymerizations of the new cyclic carbonate with rac‐lactide (rac‐LA) and ?‐caprolactone (CL) were attempted. Rac‐LA copolymerized well with MAC, but CL copolymerizations produced insoluble products. Oligomeric macroinitiators of MAC and rac‐LA were synthesized from stannous ethoxide, and both macroinitiators were used for the controlled ring‐opening polymerization of rac‐LA. The polymerization kinetics were examined by monitoring the disappearance of the characteristic C? O ring stretch of the monomer at 1240 cm?1 with real‐time in situ Fourier transform infrared spectroscopy. Postpolymerization oxidation reactions were conducted to epoxidize the unsaturated bonds of the MAC‐functionalized polymers. Epoxide‐containing polymers may allow further organic transformations with various nucleophiles, such as amines, alcohols, and carboxylic acids. NMR was used for microstructure identification of the polymers, and size exclusion chromatography and differential scanning calorimetry were used to characterize the new functionalized poly(ester‐carbonates). © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1978–1991, 2003  相似文献   

8.
The kinetics of ethene and propene polymerization at 20–60°C in the presence of the homogeneous catalyst system rac‐Me2Si(2‐methyl‐4‐phenyl‐1‐indenyl)2ZrCl2/methylaluminoxane was investigated by means of stopped‐flow techniques. The specific rate of chain propagation, measured at the very short reaction times typical of this method, turned out to be ≈102 times higher for ethene than for propene; this suggests that diffusion limitations through the poly(ethylene) precipitating at longer reaction times may be responsible for the fact that the two monomers polymerize instead at comparable rates under “standard” conditions. It was also found that the concentration of active sites is significantly lower than the analytical Zr concentration.  相似文献   

9.
Ethylene (E), propylene (P), and 1‐pentene (A) terpolymers differing in monomer composition ratio were produced, using the metallocenes rac‐ethylene bis(indenyl) zirconium dichloride/methylaluminoxane (rac‐Et(Ind)2ZrCl2/MAO), isopropyl bis(cyclopentadienyl)fluorenyl zirconium dichloride/methylaluminoxane (Me2C(Cp)(Flu)ZrCl2/MAO, and bis(cyclopentadienyl)zirconium dichloride, supported on silica impregnated with MAO (Cp2ZrCl2/MAO/SiO2/MAO) as catalytic systems. The catalytic activities at 25 °C and normal pressure were compared. The best result was obtained with the first catalyst. A detailed study of 13C NMR chemical shifts, triad sequences distributions, monomer‐average sequence lengths, and reactivity ratios for the terpolymers is presented. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 947–957, 2008  相似文献   

10.
The ionic [Ti33‐OPri)2(µ‐OPri)3(OPri)6][FeCl4] halo‐alkoxide ( A ) was investigated for its activity towards the bulk polymerization of rac‐lactide (rac‐LA) and ?‐caprolactone (?‐CL) in various temperatures, monomer/ A molar proportions, and reaction times. The reactivity of A in the ring‐opening polymerization (ROP) of both monomers is mainly due to the cationic [Ti3(OPri)11]+ unity and proceeds through the coordination–insertion mechanism. Molecular weights ranging from 6,379 to 13,950 g mol?1 and PDI values varying from 1.22 to 1.52 were obtained. Results of ROP kinetic studies for both ?‐CL and rac‐LA confirm that the reaction rates are first‐order with respect to monomers. The production of poly(?‐caprolactone) shows a higher sensitivity of the reaction rate to temperature, while the polymerization of rac‐LA is slower and more dependent on the thermal stability of the active species during the propagation step. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2509–2517  相似文献   

11.
Ansa‐zirconocene diamide complex rac‐Me2Si(CMB)2Zr(NMe2)2 (rac‐1, CMB = 1‐C5H2‐2‐Me‐4‐tBu) reacts with AlR3 (R = Me, Et, i‐Bu) and then with [CPh3]+[B(C6F5)4] (2) in toluene in order to in situ generate cationic alkylzirconium species. In the sequential NMR‐scale reactions of rac‐1 with various amount of AlMe3 and 2, rac‐1 transforms first to rac‐Me2Si(CMB)2Zr(Me)(NMe2) (rac‐3) and rac‐Me2Si(CMB)2ZrMe2 (rac‐4) by the reaction with AlMe3, and then to [rac‐Me2Si(CMB)2ZrMe]+ (5+) cation by the reaction of the resulting mixtures with 2. The activities of propylene polymerizations by rac‐1/Al(i‐Bu)3/2 system are dependent on the type and concentration of AlR3, resulting in the order of activity: rac‐1/Al(i‐Bu)3/2 > rac‐1/AlEt3/2 > rac‐1/MAO ≫ rac‐1/AlMe3/2 system. The bulkier isobutyl substituents make inactive catalytic species sterically unfavorable and give rise to more separated ion pairs so that the monomers can easily access to the active sites. The dependence of the maximum rate (Rp, max) on polymerization temperature (Tp) obtained by rac‐1/Al(i‐Bu)3/2 system follows Arrhenius relation, and the overall activation energy corresponds to 0.34 kcal/mol. The molecular weight (MW) of the resulting isotactic polypropylene (iPP) is not sensitive to Al(i‐Bu)3 concentration. The analysis of regiochemical errors of iPP shows that the chain transfer to Al(i‐Bu)3 is a minor chain termination. The 1,3‐addition of propylene monomer is the main source of regiochemical sequence and the [mr] sequence is negligible, as a result the meso pentad ([mmmm]) values of iPPs are very high ([mmmm] > 94%). These results can explain the fact that rac‐1/Al(i‐Bu)3/2 system keeps high activity over a wide range of [Al(i‐Bu)3]/[Zr] ratio between 32 and 3,260. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1071–1082, 1999  相似文献   

12.
An α‐diimine Pd(II) complex containing chiral sec‐phenethyl groups, {bis[N,N′‐(4‐methyl‐2‐sec‐phenethylphenyl)imino]‐2,3‐butadiene}dichloropalladium (rac‐ C1 ), was synthesized and characterized. rac‐ C1 was applied as an efficient catalyst for the Suzuki–Miyaura cross‐coupling reaction between various aniline halides and arylboronic acid in PEG‐400–H2O at room temperature. Among a series of aniline halides, rac‐ C1 did not catalyze the cross‐coupling of aniline chlorides and fluorides but efficiently catalyzed the cross‐coupling of aniline bromides and iodides with phenylboronic acid. The catalytic activity reduced slightly with increasing steric hindrance of the aniline bromides. The complexes {bis[N,N′‐(4‐fluoro‐2,6‐diphenylphenyl)imino]‐2,3‐butadiene}dichloropalladium and {bis[N,N′‐(4‐fluoro‐2,6‐diphenylphenyl)imino]acenaphthene}dichloropalladium were also found to be efficient catalysts for the reaction. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
The monomer 5‐[(5‐ethynyl‐1‐naphthyl)ethynyl]‐N,N‐dimethylnaphthalen‐1‐amine was satisfactory obtained through the heterocoupling reaction of 5‐ethynyl‐N,N‐dimethylnaphthalen‐1‐amine and 4‐(5‐iodo‐1‐naphthyl)‐2‐methyl‐3‐butyn‐2‐ol catalyzed by a palladium–copper system, followed by acetone elimination. Poly{5‐[(5‐ethynyl‐1‐naphthyl)ethynyl]‐N,N‐dimethylnaphthalen‐1‐amine} was obtained through the reaction of the acetylene monomer with homogeneous rhodium and palladium catalyst complexes. The structure of the polymers always showed a trans–cisoidal chain configuration on the basis of IR and NMR spectra. Moreover, only for the rhodium catalyst complex in methanol was a dimeric product isolated in a very low yield, having a conjugated terminal ene–yne structure, which permitted the consideration of a metallated chain‐transfer intermediate in the polymer propagation. The mass determination of the polymers, by osmometry and gel permeation chromatography techniques, showed low average molecular weights. The kinetics of the catalyzed polymerization were analyzed. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2038–2047, 2007  相似文献   

14.
1‐Hexene was polymerized by rac‐(dimethylsilyl)bis(4,5,6,7‐tetrahydro‐1‐indenyl)zirconium dichloride catalyst and methylaluminoxane cocatalyst over the temperature range 0–100 °C. The polymerization rate, polymer molecular weight, and polymer microstructure (stereospecificity and regiospecificity) were studied as a function of the temperature and the concentrations of monomer, catalyst, and cocatalyst. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3802–3811, 2000  相似文献   

15.
The copolymerization of propylene and 3‐buten‐1‐ol protected with alkylaluminum [trimethylaluminum (TMA) or triisobutylaluminum] was conducted with an isospecific zirconocene catalyst [rac‐dimethylsilylbis(1‐indenyl)zirconium dichloride], combined with methylaluminoxane as a cocatalyst, in the presence of additional TMA or H2 as the chain‐transfer reagent if necessary. The results indicated that end‐hydroxylated polypropylene was obtained in the presence of the chain‐transfer reagents because of the formation of dormant species after the insertion of the 3‐buten‐1‐ol‐based monomer followed by chain‐transfer reactions. The selectivity of the chain‐transfer reactions was influenced by the alkylaluminum protecting the comonomer and the catalyst structure. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5600–5607, 2004  相似文献   

16.
A dibenzobarrelene‐bridged, α‐diimine NiII catalyst (rac‐ 3 ) was synthesized and shown to have exceptional behavior for the polymerization of ethylene. The catalyst afforded high molecular weight polyethylenes with narrow dispersities and degrees of branching much lower than those made by related α‐diimine nickel catalysts. Catalyst rac‐ 3 demonstrated living behavior at room temperature, produced linear polyethylene (Tm=135 °C) at −20 °C, and, most importantly, was able to copolymerize ethylene with the biorenewable polar monomer methyl 10‐undecenoate to yield highly linear ester‐functionalized polyethylene.  相似文献   

17.
A dibenzobarrelene‐bridged, α‐diimine NiII catalyst (rac‐ 3 ) was synthesized and shown to have exceptional behavior for the polymerization of ethylene. The catalyst afforded high molecular weight polyethylenes with narrow dispersities and degrees of branching much lower than those made by related α‐diimine nickel catalysts. Catalyst rac‐ 3 demonstrated living behavior at room temperature, produced linear polyethylene (Tm=135 °C) at ?20 °C, and, most importantly, was able to copolymerize ethylene with the biorenewable polar monomer methyl 10‐undecenoate to yield highly linear ester‐functionalized polyethylene.  相似文献   

18.
The main focus of this study is the ethylene/hexene copolymerization with the silica supported metallocene SiO2/MAO/rac‐Me2Si[2‐Me‐4‐Ph‐Ind]2ZrCl2. Polymerizations were carried out in toluene at a reaction temperature of 40°C–60°C and the cocatalyst used was triisobutylaluminium (TIBA). The kinetics of the copolymerization reactions (reactivity ratios rE/H, monomer consumption during reaction) were investigated and molecular weights Mw, molecular weight distributions MWD and melting points Tm were determined. A schematic model for the blend formation observed was developed that based on a filtration effect of monomers by the copolymer shell around the catalyst pellet.  相似文献   

19.
The copolymerization of propylene with 1‐octene was carried out with rac‐dimethylsilylbis(2,4,6‐trimethylindenyl)zirconium dichloride as a catalyst activated by methylaluminoxane (MAO) and an MAO/triisobutylaluminum mixture. The copolymerization conditions, including the polymerization temperature, Al/Zr molar ratio, and 1‐octene concentration in the feed, significantly influenced the catalyst activity, 1‐octene incorporation, polymer molecular weight, and melting temperature. The addition of 1‐octene to the polymerization system caused a decrease in the activity, whereas the melting temperature and intrinsic viscosity of the polymer increased. The microstructure of the propylene–1‐octene copolymer was characterized by 13C NMR, and the reactivity ratios of the copolymerization were estimated from the dyad distribution of the monomer sequences. The amount of regioirregular structures arising from 2,1‐ and 1,3‐misinserted propylene decreased as the 1‐octene content increased. The influence of the propagation chain on the polymerization mechanism is proposed to be the main reason for the changes in the reactivity ratios and regioirregularity with the polymerization conditions. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4299–4307, 2000  相似文献   

20.
The homogeneous atom transfer radical polymerization (ATRP) of n‐butyl acrylate with CuBr/N‐(n‐hexyl)‐2‐pyridylmethanimine as a catalyst and ethyl 2‐bromoisobutyrate as an initiator was investigated. The kinetic plots of ln([M]0/[M]) versus the reaction time for the ATRP systems in different solvents such as toluene, anisole, N,N‐dimethylformamide, and 1‐butanol were linear throughout the reactions, and the experimental molecular weights increased linearly with increasing monomer conversion and were very close to the theoretical values. These, together with the relatively narrow molecular weight distributions (polydispersity index ~ 1.40 in most cases with monomer conversion > 50%), indicated that the polymerization was living and controlled. Toluene appeared to be the best solvent for the studied ATRP system in terms of the polymerization rate and molecular weight distribution among the solvents used. The polymerization showed zero order with respect to both the initiator and the catalyst, probably because of the presence of a self‐regulation process at the beginning of the reaction. The reaction temperature had a positive effect on the polymerization rate, and the optimum reaction temperature was found to be 100 °C. An apparent enthalpy of activation of 81.2 kJ/mol was determined for the ATRP of n‐butyl acrylate, corresponding to an enthalpy of equilibrium of 63.6 kJ/mol. An apparent enthalpy of activation of 52.8 kJ/mol was also obtained for the ATRP of methyl methacrylate under similar reaction conditions. Moreover, the CuBr/N‐(n‐hexyl)‐2‐pyridylmethanimine‐based system was proven to be applicable to living block copolymerization and living random copolymerization of n‐butyl acrylate with methyl methacrylate. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3549–3561, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号